Header

UZH-Logo

Maintenance Infos

Modern management of primary T-cell immunodeficiencies


Schmid, Jana Pachlopnik; Güngör, Tayfun; Seger, Reinhard (2014). Modern management of primary T-cell immunodeficiencies. Pediatric Allergy and Immunology, 25(4):300-313.

Abstract

The study of human T-cell PIDs with Mendelian inheritance has enabled the molecular characterization of important key functions and pathways in T-cell biology. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Severe combined immunodeficiencies (SCIDs) are characterized by a complete lack of T-cell development and, in some cases, a developmental block in other lymphoid lineages and manifest within the first year of life. Combined immunodeficiency syndromes (CIDs) result from hypomorphic mutations in typical SCID associated genes or from partial defects of T-cell development and manifest later in childhood by increased susceptibility to infection often combined with disturbances in immune homeostasis, e.g., autoimmunity and increased incidence in lymphoproliferation. The discovery of mutations and characterization of the cellular changes that underlie lymphocyte defects and immune dysregulation have led to novel, specific, successful therapies for severe diseases which are often fatal if left untreated. Over the last few years, impressive progress has been made in understanding the disease mechanisms of T-cell immunodeficiencies and in improving the long-term outcomes of potentially curative treatments, including gene therapy.

Abstract

The study of human T-cell PIDs with Mendelian inheritance has enabled the molecular characterization of important key functions and pathways in T-cell biology. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Severe combined immunodeficiencies (SCIDs) are characterized by a complete lack of T-cell development and, in some cases, a developmental block in other lymphoid lineages and manifest within the first year of life. Combined immunodeficiency syndromes (CIDs) result from hypomorphic mutations in typical SCID associated genes or from partial defects of T-cell development and manifest later in childhood by increased susceptibility to infection often combined with disturbances in immune homeostasis, e.g., autoimmunity and increased incidence in lymphoproliferation. The discovery of mutations and characterization of the cellular changes that underlie lymphocyte defects and immune dysregulation have led to novel, specific, successful therapies for severe diseases which are often fatal if left untreated. Over the last few years, impressive progress has been made in understanding the disease mechanisms of T-cell immunodeficiencies and in improving the long-term outcomes of potentially curative treatments, including gene therapy.

Statistics

Citations

4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 12 Feb 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:June 2014
Deposited On:12 Feb 2015 13:36
Last Modified:05 Apr 2016 18:51
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0905-6157
Publisher DOI:https://doi.org/10.1111/pai.12179
PubMed ID:24383740

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 617kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations