Header

UZH-Logo

Maintenance Infos

Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts


Buchmann, Jan P; Löytynoja, Ari; Wicker, Thomas; Schulman, Alan H (2014). Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts. Mobile DNA, 5:24.

Abstract

Background: CACTA elements are DNA transposons and are found in numerous organisms. Despite their low activity, several thousand copies can be identified in many genomes. CACTA elements transpose using a ‘cut-and-paste’ mechanism, which is facilitated by a DDE transposase. DDE transposases from CACTA elements contain, despite their conserved function, different exon numbers among various CACTA families. While earlier studies analyzed the ancestral history of the DDE transposases, no studies have examined exon loss and gain with a view of mechanisms that could drive the changes.
Results: We analyzed 64 transposases from different CACTA families among monocotyledonous and eudicotyledonous host species. The annotation of the exon/intron boundaries showed a range from one to six exons. A robust multiple sequence alignment of the 64 transposases based on their protein sequences was created and used for phylogenetic analysis, which revealed eight different clades. We observed that the exon numbers in CACTA transposases are not specific for a host genome. We found that ancient CACTA lineages diverged before the divergence of monocotyledons and eudicotyledons. Most exon/intron boundaries were found in three distinct regions among all the transposases, grouping 63 conserved intron/exon boundaries.
Conclusions: We propose a model for the ancestral CACTA transposase gene, which consists of four exons, that predates the divergence of the monocotyledons and eudicotyledons. Based on this model, we propose pathways of intron loss or gain to explain the observed variation in exon numbers. While intron loss appears to have prevailed, a putative case of intron gain was nevertheless observed.

Abstract

Background: CACTA elements are DNA transposons and are found in numerous organisms. Despite their low activity, several thousand copies can be identified in many genomes. CACTA elements transpose using a ‘cut-and-paste’ mechanism, which is facilitated by a DDE transposase. DDE transposases from CACTA elements contain, despite their conserved function, different exon numbers among various CACTA families. While earlier studies analyzed the ancestral history of the DDE transposases, no studies have examined exon loss and gain with a view of mechanisms that could drive the changes.
Results: We analyzed 64 transposases from different CACTA families among monocotyledonous and eudicotyledonous host species. The annotation of the exon/intron boundaries showed a range from one to six exons. A robust multiple sequence alignment of the 64 transposases based on their protein sequences was created and used for phylogenetic analysis, which revealed eight different clades. We observed that the exon numbers in CACTA transposases are not specific for a host genome. We found that ancient CACTA lineages diverged before the divergence of monocotyledons and eudicotyledons. Most exon/intron boundaries were found in three distinct regions among all the transposases, grouping 63 conserved intron/exon boundaries.
Conclusions: We propose a model for the ancestral CACTA transposase gene, which consists of four exons, that predates the divergence of the monocotyledons and eudicotyledons. Based on this model, we propose pathways of intron loss or gain to explain the observed variation in exon numbers. While intron loss appears to have prevailed, a putative case of intron gain was nevertheless observed.

Statistics

Citations

Altmetrics

Downloads

14 downloads since deposited on 16 Jan 2015
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2014
Deposited On:16 Jan 2015 09:15
Last Modified:06 Aug 2017 06:54
Publisher:BioMed Central
ISSN:1759-8753
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1759-8753-5-24
PubMed ID:25206928

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations