Header

UZH-Logo

Maintenance Infos

Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function


Biswas, A; Ivaskevicius, V; Thomas, A; Varvenne, M; Brand, B; Rott, H; Haussels, I; Ruehl, H; Scholz, Ute; Klamroth, R; Oldenburg, J (2014). Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function. Annals of Hematology, 93(10):1665-1676.

Abstract

Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.

Abstract

Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.

Statistics

Citations

5 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Hematology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:October 2014
Deposited On:23 Jan 2015 13:48
Last Modified:05 Apr 2016 18:52
Publisher:Springer
ISSN:0939-5555
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s00277-014-2102-4
PubMed ID:24889649

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations