Header

UZH-Logo

Maintenance Infos

CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses


Rosalia, Rodney A; Cruz, Luis J; van Duikeren, Suzanne; Tromp, Angelino T; Silva, Ana L; Jiskoot, Wim; de Gruijl, Tanja; Löwik, Clemens; Oostendorp, Jaap; van der Burg, Sjoerd H; Ossendorp, Ferry (2015). CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials, 40:88-97.

Abstract

Dendritic cells (DC) play a prominent role in the priming of CD8(+) T cells. Vaccination is a promising treatment to boost tumor-specific CD8(+) T cells which is crucially dependent on adequate delivery of the vaccine to DC. Upon subcutaneous (s.c.) injection, only a small fraction of the vaccine is delivered to DC whereas the majority is cleared by the body or engulfed by other immune cells. To overcome this, we studied vaccine delivery to DC via CD40-targeting using a multi-compound particulate vaccine with the aim to induce potent CD8(+) T cell responses. To this end, biodegradable poly(lactic-co-glycolic acid) nanoparticles (NP) were formulated encapsulating a protein Ag, Pam3CSK4 and Poly(I:C) and coated with an agonistic αCD40-mAb (NP-CD40). Targeting NP to CD40 led to very efficient and selective delivery to DC in vivo upon s.c. injection and improved priming of CD8(+) T cells against two independent tumor associated Ag. Therapeutic application of NP-CD40 enhanced tumor control and prolonged survival of tumor-bearing mice. We conclude that CD40-mediated delivery to DC of NP-vaccines, co-encapsulating Ag and adjuvants, efficiently drives specific T cell responses, and therefore, is an attractive method to improve the efficacy of protein based cancer vaccines undergoing clinical testing in the clinic.

Abstract

Dendritic cells (DC) play a prominent role in the priming of CD8(+) T cells. Vaccination is a promising treatment to boost tumor-specific CD8(+) T cells which is crucially dependent on adequate delivery of the vaccine to DC. Upon subcutaneous (s.c.) injection, only a small fraction of the vaccine is delivered to DC whereas the majority is cleared by the body or engulfed by other immune cells. To overcome this, we studied vaccine delivery to DC via CD40-targeting using a multi-compound particulate vaccine with the aim to induce potent CD8(+) T cell responses. To this end, biodegradable poly(lactic-co-glycolic acid) nanoparticles (NP) were formulated encapsulating a protein Ag, Pam3CSK4 and Poly(I:C) and coated with an agonistic αCD40-mAb (NP-CD40). Targeting NP to CD40 led to very efficient and selective delivery to DC in vivo upon s.c. injection and improved priming of CD8(+) T cells against two independent tumor associated Ag. Therapeutic application of NP-CD40 enhanced tumor control and prolonged survival of tumor-bearing mice. We conclude that CD40-mediated delivery to DC of NP-vaccines, co-encapsulating Ag and adjuvants, efficiently drives specific T cell responses, and therefore, is an attractive method to improve the efficacy of protein based cancer vaccines undergoing clinical testing in the clinic.

Statistics

Citations

58 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Immunology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:February 2015
Deposited On:17 Feb 2015 15:12
Last Modified:08 Dec 2017 11:00
Publisher:Elsevier
ISSN:0142-9612
Publisher DOI:https://doi.org/10.1016/j.biomaterials.2014.10.053
PubMed ID:25465442

Download

Full text not available from this repository.
View at publisher