Header

UZH-Logo

Maintenance Infos

A simple and accurate method for computer-aided transapical aortic valve replacement


Karar, Mohamed Esmail; Merk, Denis R; Falk, Volkmar; Burgert, Oliver (2016). A simple and accurate method for computer-aided transapical aortic valve replacement. Computerized Medical Imaging and Graphics, 50:31-41.

Abstract

BACKGROUND AND PURPOSE: Transapical aortic valve replacement (TAVR) is a recent minimally invasive surgical treatment technique for elderly and high-risk patients with severe aortic stenosis. In this paper, a simple and accurate image-based method is introduced to aid the intra-operative guidance of TAVR procedure under 2-D X-ray fluoroscopy.
METHODS: The proposed method fuses a 3-D aortic mesh model and anatomical valve landmarks with live 2-D fluoroscopic images. The 3-D aortic mesh model and landmarks are reconstructed from interventional X-ray C-arm CT system, and a target area for valve implantation is automatically estimated using these aortic mesh models. Based on template-based tracking approach, the overlay of visualized 3-D aortic mesh model, landmarks and target area of implantation is updated onto fluoroscopic images by approximating the aortic root motion from a pigtail catheter motion without contrast agent. Also, a rigid intensity-based registration algorithm is used to track continuously the aortic root motion in the presence of contrast agent. Furthermore, a sensorless tracking of the aortic valve prosthesis is provided to guide the physician to perform the appropriate placement of prosthesis into the estimated target area of implantation.
RESULTS: Retrospective experiments were carried out on fifteen patient datasets from the clinical routine of the TAVR. The maximum displacement errors were less than 2.0mm for both the dynamic overlay of aortic mesh models and image-based tracking of the prosthesis, and within the clinically accepted ranges. Moreover, high success rates of the proposed method were obtained above 91.0% for all tested patient datasets.
CONCLUSION: The results showed that the proposed method for computer-aided TAVR is potentially a helpful tool for physicians by automatically defining the accurate placement position of the prosthesis during the surgical procedure.

Abstract

BACKGROUND AND PURPOSE: Transapical aortic valve replacement (TAVR) is a recent minimally invasive surgical treatment technique for elderly and high-risk patients with severe aortic stenosis. In this paper, a simple and accurate image-based method is introduced to aid the intra-operative guidance of TAVR procedure under 2-D X-ray fluoroscopy.
METHODS: The proposed method fuses a 3-D aortic mesh model and anatomical valve landmarks with live 2-D fluoroscopic images. The 3-D aortic mesh model and landmarks are reconstructed from interventional X-ray C-arm CT system, and a target area for valve implantation is automatically estimated using these aortic mesh models. Based on template-based tracking approach, the overlay of visualized 3-D aortic mesh model, landmarks and target area of implantation is updated onto fluoroscopic images by approximating the aortic root motion from a pigtail catheter motion without contrast agent. Also, a rigid intensity-based registration algorithm is used to track continuously the aortic root motion in the presence of contrast agent. Furthermore, a sensorless tracking of the aortic valve prosthesis is provided to guide the physician to perform the appropriate placement of prosthesis into the estimated target area of implantation.
RESULTS: Retrospective experiments were carried out on fifteen patient datasets from the clinical routine of the TAVR. The maximum displacement errors were less than 2.0mm for both the dynamic overlay of aortic mesh models and image-based tracking of the prosthesis, and within the clinically accepted ranges. Moreover, high success rates of the proposed method were obtained above 91.0% for all tested patient datasets.
CONCLUSION: The results showed that the proposed method for computer-aided TAVR is potentially a helpful tool for physicians by automatically defining the accurate placement position of the prosthesis during the surgical procedure.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiovascular Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:19 Feb 2015 09:21
Last Modified:12 May 2016 01:00
Publisher:Pergamon
ISSN:0895-6111
Publisher DOI:https://doi.org/10.1016/j.compmedimag.2014.09.005
PubMed ID:25306532

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations