Header

UZH-Logo

Maintenance Infos

Three-dimensional organization of surface-bound silicone nanofilaments revealed by focused ion beam nanotomography


Meseck, Georg R; Käch, Andres; Seeger, Stefan (2014). Three-dimensional organization of surface-bound silicone nanofilaments revealed by focused ion beam nanotomography. Journal of Physical Chemistry C, 118(43):24967-24975.

Abstract

One-dimensional (1D) nanostructures have been identified as key technology for future devices and integrated into surface-bound materials. The roughness of surface-bound 1D silicone nanofilaments (SNFs) has been used extensively to create surfaces with extreme wetting properties and as carrier material. Electron microscopy has shown that this material is made of individual filaments with diameters spanning tens of nanometers and a length of several micrometers which arrange into a highly entangled quasi-porous network. However, a comprehensive analysis of the three-dimensional (3D) superstructure has remained elusive so far. In this study, focused ion beam nanotomography (FIB-nt) is used to quantify the otherwise hardly accessible structural parameters roughness (12.68) and volume fraction (2.80). The volume fraction is anisotropic, and two major species of SNFs are quantified to contribute equally to the overall surface area. Spatial statistics reveals a self-avoiding growth pattern of SNFs over the substrate, and a 3D model of the data is rendered. The presented analysis therefore significantly advances the understanding of SNF surface coatings with regard to their structure at the nano- and microscale. Finally, the described procedure may serve as a useful tool to analyze other surface-bound 1D nanostructures of similar complex arrangement.

Abstract

One-dimensional (1D) nanostructures have been identified as key technology for future devices and integrated into surface-bound materials. The roughness of surface-bound 1D silicone nanofilaments (SNFs) has been used extensively to create surfaces with extreme wetting properties and as carrier material. Electron microscopy has shown that this material is made of individual filaments with diameters spanning tens of nanometers and a length of several micrometers which arrange into a highly entangled quasi-porous network. However, a comprehensive analysis of the three-dimensional (3D) superstructure has remained elusive so far. In this study, focused ion beam nanotomography (FIB-nt) is used to quantify the otherwise hardly accessible structural parameters roughness (12.68) and volume fraction (2.80). The volume fraction is anisotropic, and two major species of SNFs are quantified to contribute equally to the overall surface area. Spatial statistics reveals a self-avoiding growth pattern of SNFs over the substrate, and a 3D model of the data is rendered. The presented analysis therefore significantly advances the understanding of SNF surface coatings with regard to their structure at the nano- and microscale. Finally, the described procedure may serve as a useful tool to analyze other surface-bound 1D nanostructures of similar complex arrangement.

Statistics

Citations

7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Microscopy and Image Analysis
07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:30 October 2014
Deposited On:19 Feb 2015 13:50
Last Modified:05 Apr 2016 18:56
Publisher:American Chemical Society
ISSN:1932-7447
Funders:Swiss National Science Foundation
Publisher DOI:https://doi.org/10.1021/jp506867n

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations