Header

UZH-Logo

Maintenance Infos

Combination of miRNA499 and miRNA133 exerts a synergic effect on cardiac differentiation


Pisano, Federica; Altomare, Claudia; Cervio, Elisabetta; Barile, Lucio; Rocchetti, Marcella; Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Copes, Francesco; Manuela, Mura; Patrizia, Danieli; Viarengo, Gianluca; Zaza, Antonio; Gnecchi, Massimiliano (2015). Combination of miRNA499 and miRNA133 exerts a synergic effect on cardiac differentiation. Stem Cells, 33(4):1187-1199.

Abstract

Several studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance and differentiation. In particular, it has been shown that miRNA133, miRNA1 and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation. We used mouse P19 cells as a cardiogenic differentiation model. miRNA499, miRNA1 or miRNA133 were transiently over-expressed in P19 cells individually or in different combinations. The over-expression of miRNA499 alone increased the number of beating cells and the association of miRNA499 with miRNA133 exerted a synergistic effect, further increasing the number of beating cells. Real Time PCR showed that the combination of miRNA499 + 133 enhanced the expression of cardiac genes compared with controls. Western Blot and immunocytochemistry for connexin43 and cardiac troponin T confirmed these findings. Importantly, caffeine responsiveness, a clear functional parameter of cardiac differentiation, was increased by miRNA499 in association with miRNA133 and was directly correlated with the activation of the cardiac troponin I isoform promoter. Cyclic contractions were reversibly abolished by extracellular calcium depletion, nifedipine, ryanodine and IP3R blockade. Finally, we demonstrated that the use of miRNA499 + 133 induced cardiac differentiation even in the absence of dimethyl sulfoxide. Our results show that the areas spontaneously contracting possess electrophysiological and pharmacological characteristics compatible with true cardiac excitation-contraction coupling. The translational relevance of our findings was reinforced by the demonstration that the over-expression of miRNA499 and miRNA133 induces the differentiation of human mesenchymal stromal cells toward the cardiac lineage. This article is protected by copyright. All rights reserved.

Abstract

Several studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance and differentiation. In particular, it has been shown that miRNA133, miRNA1 and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation. We used mouse P19 cells as a cardiogenic differentiation model. miRNA499, miRNA1 or miRNA133 were transiently over-expressed in P19 cells individually or in different combinations. The over-expression of miRNA499 alone increased the number of beating cells and the association of miRNA499 with miRNA133 exerted a synergistic effect, further increasing the number of beating cells. Real Time PCR showed that the combination of miRNA499 + 133 enhanced the expression of cardiac genes compared with controls. Western Blot and immunocytochemistry for connexin43 and cardiac troponin T confirmed these findings. Importantly, caffeine responsiveness, a clear functional parameter of cardiac differentiation, was increased by miRNA499 in association with miRNA133 and was directly correlated with the activation of the cardiac troponin I isoform promoter. Cyclic contractions were reversibly abolished by extracellular calcium depletion, nifedipine, ryanodine and IP3R blockade. Finally, we demonstrated that the use of miRNA499 + 133 induced cardiac differentiation even in the absence of dimethyl sulfoxide. Our results show that the areas spontaneously contracting possess electrophysiological and pharmacological characteristics compatible with true cardiac excitation-contraction coupling. The translational relevance of our findings was reinforced by the demonstration that the over-expression of miRNA499 and miRNA133 induces the differentiation of human mesenchymal stromal cells toward the cardiac lineage. This article is protected by copyright. All rights reserved.

Statistics

Citations

8 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Cardiocentro Ticino
Dewey Decimal Classification:610 Medicine & health
Date:2015
Deposited On:10 Feb 2015 14:04
Last Modified:05 Apr 2016 18:56
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1066-5099
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/stem.1928
PubMed ID:25534971

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations