Header

UZH-Logo

Maintenance Infos

Bacterial epibionts of Daphnia: A potential route for the transfer of dissolved organic carbon in freshwater food webs


Eckert, Ester M; Pernthaler, Jakob (2014). Bacterial epibionts of Daphnia: A potential route for the transfer of dissolved organic carbon in freshwater food webs. The ISME journal, 8(9):1808-1819.

Abstract

The identification of interacting species and elucidation of their mode of interaction may be crucial to understand ecosystem-level processes. We analysed the activity and identity of bacterial epibionts in cultures of Daphnia galeata and of natural daphnid populations. Epibiotic bacteria incorporated considerable amounts of dissolved organic carbon (DOC), as estimated via uptake of tritiated leucine: three times more tracer was consumed by microbes on a single Daphnia than in 1 ml of lake water. However, there was virtually no incorporation if daphnids were anaesthetised, suggesting that their filtration activity was essential for this process. Microbial DOC uptake could predominantly be assigned to microbes that were located on the filter combs of daphnids, where the passage of water would ensure a continuously high DOC supply. Most of these bacteria were Betaproteobacteria from the genus Limnohabitans. Specifically, we identified a monophyletic cluster harbouring Limnohabitans planktonicus that encompassed sequence types from D. galeata cultures, from the gut of Daphnia magna and from daphnids of Lake Zurich. Our results suggest that the epibiotic growth of bacteria related to Limnohabitans on Daphnia spp. may be a widespread and rather common phenomenon. Moreover, most of the observed DOC flux to Daphnia in fact does not seem to be associated with the crustacean biomass itself but with its epibiotic microflora. The unexplored physical association of daphnids with heterotrophic bacteria may have considerable implications for our understanding of carbon transfer in freshwater food webs, that is, a trophic 'shortcut' between microbial DOC uptake and predation by fish.

Abstract

The identification of interacting species and elucidation of their mode of interaction may be crucial to understand ecosystem-level processes. We analysed the activity and identity of bacterial epibionts in cultures of Daphnia galeata and of natural daphnid populations. Epibiotic bacteria incorporated considerable amounts of dissolved organic carbon (DOC), as estimated via uptake of tritiated leucine: three times more tracer was consumed by microbes on a single Daphnia than in 1 ml of lake water. However, there was virtually no incorporation if daphnids were anaesthetised, suggesting that their filtration activity was essential for this process. Microbial DOC uptake could predominantly be assigned to microbes that were located on the filter combs of daphnids, where the passage of water would ensure a continuously high DOC supply. Most of these bacteria were Betaproteobacteria from the genus Limnohabitans. Specifically, we identified a monophyletic cluster harbouring Limnohabitans planktonicus that encompassed sequence types from D. galeata cultures, from the gut of Daphnia magna and from daphnids of Lake Zurich. Our results suggest that the epibiotic growth of bacteria related to Limnohabitans on Daphnia spp. may be a widespread and rather common phenomenon. Moreover, most of the observed DOC flux to Daphnia in fact does not seem to be associated with the crustacean biomass itself but with its epibiotic microflora. The unexplored physical association of daphnids with heterotrophic bacteria may have considerable implications for our understanding of carbon transfer in freshwater food webs, that is, a trophic 'shortcut' between microbial DOC uptake and predation by fish.

Statistics

Citations

15 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 20 Feb 2015
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2014
Deposited On:20 Feb 2015 11:53
Last Modified:24 Aug 2017 12:10
Publisher:Nature Publishing Group
ISSN:1751-7362
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/ismej.2014.39
PubMed ID:24694716

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 627kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations