Header

UZH-Logo

Maintenance Infos

Patterning of the angiosperm female gametophyte through the prism of theoretical paradigms


Lituiev, Dmytro S; Grossniklaus, Ueli (2014). Patterning of the angiosperm female gametophyte through the prism of theoretical paradigms. Biochemical Society Transactions, 42(2):332-339.

Abstract

The FG (female gametophyte) of flowering plants (angiosperms) is a simple highly polar structure composed of only a few cell types. The FG develops from a single cell through mitotic divisions to generate, depending on the species, four to 16 nuclei in a syncytium. These nuclei are then partitioned into three or four distinct cell types. The mechanisms underlying the specification of the nuclei in the FG has been a focus of research over the last decade. Nevertheless, we are far from understanding the patterning mechanisms that govern cell specification. Although some results were previously interpreted in terms of static positional information, several lines of evidence now show that local interactions are important. In the present article, we revisit the available data on developmental mutants and cell fate markers in the light of theoretical frameworks for biological patterning. We argue that a further dissection of the mechanisms may be impeded by the combinatorial and dynamical nature of developmental cues. However, accounting for these properties of developing systems is necessary to disentangle the diversity of the phenotypic manifestations of the underlying molecular interactions.

Abstract

The FG (female gametophyte) of flowering plants (angiosperms) is a simple highly polar structure composed of only a few cell types. The FG develops from a single cell through mitotic divisions to generate, depending on the species, four to 16 nuclei in a syncytium. These nuclei are then partitioned into three or four distinct cell types. The mechanisms underlying the specification of the nuclei in the FG has been a focus of research over the last decade. Nevertheless, we are far from understanding the patterning mechanisms that govern cell specification. Although some results were previously interpreted in terms of static positional information, several lines of evidence now show that local interactions are important. In the present article, we revisit the available data on developmental mutants and cell fate markers in the light of theoretical frameworks for biological patterning. We argue that a further dissection of the mechanisms may be impeded by the combinatorial and dynamical nature of developmental cues. However, accounting for these properties of developing systems is necessary to disentangle the diversity of the phenotypic manifestations of the underlying molecular interactions.

Statistics

Citations

3 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 19 Feb 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:1 April 2014
Deposited On:19 Feb 2015 17:12
Last Modified:05 Apr 2016 18:57
Publisher:Portland Press
ISSN:0300-5127
Publisher DOI:https://doi.org/10.1042/BST20140036

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 388kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations