Header

UZH-Logo

Maintenance Infos

Protein synthesis dependence of growth cone collapse induced by different Nogo-A-domains


Manns, Richard; Schmandke, Andre; Schmandke, Antonio; Jareonsettasin, Prem; Cook, Geoffrey; Schwab, Martin E; Holt, Christine; Keynes, Roger (2014). Protein synthesis dependence of growth cone collapse induced by different Nogo-A-domains. PLoS ONE, 9(1):e86820.

Abstract

BACKGROUND: The protein Nogo-A regulates axon growth in the developing and mature nervous system, and this is carried out by two distinct domains in the protein, Nogo-A-Δ20 and Nogo-66. The differences in the signalling pathways engaged in axon growth cones by these domains are not well characterized, and have been investigated in this study. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 using explanted chick dorsal root ganglion neurons growing on laminin/poly-lysine substratum. Collapse induced by purified Nogo-A-Δ20 peptide is dependent on protein synthesis whereas that induced by Nogo-66 peptide is not. Nogo-A-Δ20-induced collapse is accompanied by a protein synthesis-dependent rise in RhoA expression in the growth cone, but is unaffected by proteasomal catalytic site inhibition. Conversely Nogo-66-induced collapse is inhibited ∼ 50% by proteasomal catalytic site inhibition. CONCLUSION/SIGNIFICANCE: Growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 is mediated by signalling pathways with distinguishable characteristics concerning their dependence on protein synthesis and proteasomal function.

Abstract

BACKGROUND: The protein Nogo-A regulates axon growth in the developing and mature nervous system, and this is carried out by two distinct domains in the protein, Nogo-A-Δ20 and Nogo-66. The differences in the signalling pathways engaged in axon growth cones by these domains are not well characterized, and have been investigated in this study. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 using explanted chick dorsal root ganglion neurons growing on laminin/poly-lysine substratum. Collapse induced by purified Nogo-A-Δ20 peptide is dependent on protein synthesis whereas that induced by Nogo-66 peptide is not. Nogo-A-Δ20-induced collapse is accompanied by a protein synthesis-dependent rise in RhoA expression in the growth cone, but is unaffected by proteasomal catalytic site inhibition. Conversely Nogo-66-induced collapse is inhibited ∼ 50% by proteasomal catalytic site inhibition. CONCLUSION/SIGNIFICANCE: Growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 is mediated by signalling pathways with distinguishable characteristics concerning their dependence on protein synthesis and proteasomal function.

Statistics

Citations

5 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 05 Feb 2015
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2014
Deposited On:05 Feb 2015 11:38
Last Modified:10 Aug 2017 13:05
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0086820
PubMed ID:24489789

Download

Download PDF  'Protein synthesis dependence of growth cone collapse induced by different Nogo-A-domains'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)