Header

UZH-Logo

Maintenance Infos

Changes in milk L-lactate, lactate dehydrogenase, serum albumin, and IgG during milk ejection and their association with somatic cell count


Lehmann, M; Wall, S K; Wellnitz, O; Bruckmaier, R M (2015). Changes in milk L-lactate, lactate dehydrogenase, serum albumin, and IgG during milk ejection and their association with somatic cell count. Journal of Dairy Research, 82(02):129-134.

Abstract

In both conventional and automatic milking systems (AMS), sensitive and reliable mastitis detection is important for profitable milk production. Mastitis detection parameters must be able to detect mastitis when the somatic cell count (SCC) is only slightly elevated. Owing to the pre-milking teat cleaning process in AMS, sampling cannot take place before the occurrence of alveolar milk ejection and importantly, this can affect the ability of parameters to detect mastitis. The aim of the present study was to examine the effect of alveolar milk ejection on l-lactate, lactate dehydrogenase (LDH), serum albumin (SA) and immunoglobulin G (IgG) compared with SCC, a commonly used indicator of mastitis. In this experiment, milk samples were collected every 20 s from one quarter during a 120-s manual teat stimulation in ten cows. Samples were analysed for SCC, l-lactate, LDH, SA and IgG. Quarters were grouped by low (<5·0 log10 cells/ml), mid (5·0–5·7 log10 cells/ml), and high (>5·7 log10 cells/ml) SCC using the sample at t=0 s. Neither l-lactate nor LDH could statistically differentiate between low and mid-SCC quarters, but there were a significant difference in levels between the high-SCC quarters and low and mid-SCC quarters. SA could not differentiate between the low and mid-SCC quarters, but the SA levels for the high SCC quarters remained statistically different compared with low and mid-SCC quarters throughout the experiment. IgG could statistically differentiate between low and mid-SCC, although the high-SCC quarters were not statistically different from the mid-SCC quarters after 60 s. In the high-SCC quarters, a decrease was shown in all parameters during milk ejection, after t=60 s. In conclusion, alveolar milk ejection reduces the effectiveness of detection parameters when compared with SCC. With the exception of IgG, the ability of other tested parameters was not satisfactory to differentiate between quarters with low to mid-SCC levels.

Abstract

In both conventional and automatic milking systems (AMS), sensitive and reliable mastitis detection is important for profitable milk production. Mastitis detection parameters must be able to detect mastitis when the somatic cell count (SCC) is only slightly elevated. Owing to the pre-milking teat cleaning process in AMS, sampling cannot take place before the occurrence of alveolar milk ejection and importantly, this can affect the ability of parameters to detect mastitis. The aim of the present study was to examine the effect of alveolar milk ejection on l-lactate, lactate dehydrogenase (LDH), serum albumin (SA) and immunoglobulin G (IgG) compared with SCC, a commonly used indicator of mastitis. In this experiment, milk samples were collected every 20 s from one quarter during a 120-s manual teat stimulation in ten cows. Samples were analysed for SCC, l-lactate, LDH, SA and IgG. Quarters were grouped by low (<5·0 log10 cells/ml), mid (5·0–5·7 log10 cells/ml), and high (>5·7 log10 cells/ml) SCC using the sample at t=0 s. Neither l-lactate nor LDH could statistically differentiate between low and mid-SCC quarters, but there were a significant difference in levels between the high-SCC quarters and low and mid-SCC quarters. SA could not differentiate between the low and mid-SCC quarters, but the SA levels for the high SCC quarters remained statistically different compared with low and mid-SCC quarters throughout the experiment. IgG could statistically differentiate between low and mid-SCC, although the high-SCC quarters were not statistically different from the mid-SCC quarters after 60 s. In the high-SCC quarters, a decrease was shown in all parameters during milk ejection, after t=60 s. In conclusion, alveolar milk ejection reduces the effectiveness of detection parameters when compared with SCC. With the exception of IgG, the ability of other tested parameters was not satisfactory to differentiate between quarters with low to mid-SCC levels.

Statistics

Citations

4 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

74 downloads since deposited on 12 Feb 2015
42 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2015
Deposited On:12 Feb 2015 09:48
Last Modified:05 Apr 2016 18:58
Publisher:Cambridge University Press
ISSN:0022-0299
Additional Information:Copyright: Cambridge University Press
Publisher DOI:https://doi.org/10.1017/S002202991400065X

Download