Header

UZH-Logo

Maintenance Infos

Dopaminergic and serotonergic modulation of anterior insular and orbitofrontal cortex function in risky decision making


Ishii, Hironori; Ohara, Shinya; Tobler, Philippe N; Tsutsui, Ken-Ichiro; Iijima, Toshio (2015). Dopaminergic and serotonergic modulation of anterior insular and orbitofrontal cortex function in risky decision making. Neuroscience Research, 92:53-61.

Abstract

Systemic manipulations have shown that dopamine and serotonin systems are involved in risky decision making. However, how they work within the regions that implement risky choices remains unclear. The present study investigated the role of dopamine and serotonin in the rat anterior insular cortex (AIC) and orbitofrontal cortex (OFC), which make different contributions to risky decision making. We examined the effects of local injection of the D1 (SCH23390), D2 (eticlopride), 5-HT1A (WAY100635) and 5-HT2A (M100907) receptor antagonists into the AIC or OFC on risk preference in a gambling task. We found that different dopamine and serotonin receptor subtypes in the AIC and OFC differentially influence risky decision making: intra-AIC injection of D2R or 5-HT1AR blockers increased risk preference whereas intra-OFC injection of the 5-HT1AR blocker decreased it. Risk preference was not altered by intra-AIC injection of D1R and 5-HT2AR blockers or by intra-OFC injection of D1R, D2R, and 5-HT2AR blockers. Furthermore, additional analyses revealed that dopamine and serotonin signaling in the AIC have outcome history-dependent effects on risk taking: intra-AIC injection of the D2R blocker increased risk preference particularly after winning in a previous risky choice, whereas intra-AIC injection of the 5-HT1AR blocker increased risk preference after losing.

Abstract

Systemic manipulations have shown that dopamine and serotonin systems are involved in risky decision making. However, how they work within the regions that implement risky choices remains unclear. The present study investigated the role of dopamine and serotonin in the rat anterior insular cortex (AIC) and orbitofrontal cortex (OFC), which make different contributions to risky decision making. We examined the effects of local injection of the D1 (SCH23390), D2 (eticlopride), 5-HT1A (WAY100635) and 5-HT2A (M100907) receptor antagonists into the AIC or OFC on risk preference in a gambling task. We found that different dopamine and serotonin receptor subtypes in the AIC and OFC differentially influence risky decision making: intra-AIC injection of D2R or 5-HT1AR blockers increased risk preference whereas intra-OFC injection of the 5-HT1AR blocker decreased it. Risk preference was not altered by intra-AIC injection of D1R and 5-HT2AR blockers or by intra-OFC injection of D1R, D2R, and 5-HT2AR blockers. Furthermore, additional analyses revealed that dopamine and serotonin signaling in the AIC have outcome history-dependent effects on risk taking: intra-AIC injection of the D2R blocker increased risk preference particularly after winning in a previous risky choice, whereas intra-AIC injection of the 5-HT1AR blocker increased risk preference after losing.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 29 Jan 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
Dewey Decimal Classification:330 Economics
Language:English
Date:2015
Deposited On:29 Jan 2015 12:04
Last Modified:05 Apr 2016 18:59
Publisher:Elsevier
ISSN:0168-0102
Publisher DOI:https://doi.org/10.1016/j.neures.2014.11.009

Download