Header

UZH-Logo

Maintenance Infos

Coagulation at the blood-electrode interface: the role of electrochemical desorption and degradation of fibrinogen


Simona, Benjamin R; Brunisholz, René A; Morhard, Robert; Hunziker, Peter; Vörös, János (2014). Coagulation at the blood-electrode interface: the role of electrochemical desorption and degradation of fibrinogen. Langmuir, 30(24):7227-7234.

Abstract

The influence of electrochemistry on the coagulation of blood on metal surfaces was demonstrated several decades ago. In particular, the application of cathodic currents resulted in reduced surface thrombogenicity, but no molecular mechanism has been so far proposed to explain this observation. In this article we used for the first time the quartz crystal microbalance with dissipation monitoring technique coupled with an electrochemical setup (EQCM-D) to study thrombosis at the blood-electrode interface. We confirmed the reduced thrombus deposition at the cathode, and we subsequently studied the effect of cathodic currents on adsorbed fibrinogen (Fg). Using EQCM and mass spectrometry, we found that upon applying currents Fg desorbed from the electrode and was electrochemically degraded. In particular, we show that the flexible N-terminus of the α-chain, containing an important polymerization site, was cleaved from the protein, thus affecting its clottability. Our work proposes a molecular mechanism that at least partially explains how cathodic currents reduce thrombosis at the blood-electrode interface and is a relevant contribution to the rational development of medical devices with reduced thrombus formation on their surface.

Abstract

The influence of electrochemistry on the coagulation of blood on metal surfaces was demonstrated several decades ago. In particular, the application of cathodic currents resulted in reduced surface thrombogenicity, but no molecular mechanism has been so far proposed to explain this observation. In this article we used for the first time the quartz crystal microbalance with dissipation monitoring technique coupled with an electrochemical setup (EQCM-D) to study thrombosis at the blood-electrode interface. We confirmed the reduced thrombus deposition at the cathode, and we subsequently studied the effect of cathodic currents on adsorbed fibrinogen (Fg). Using EQCM and mass spectrometry, we found that upon applying currents Fg desorbed from the electrode and was electrochemically degraded. In particular, we show that the flexible N-terminus of the α-chain, containing an important polymerization site, was cleaved from the protein, thus affecting its clottability. Our work proposes a molecular mechanism that at least partially explains how cathodic currents reduce thrombosis at the blood-electrode interface and is a relevant contribution to the rational development of medical devices with reduced thrombus formation on their surface.

Statistics

Altmetrics

Downloads

63 downloads since deposited on 29 Jan 2015
32 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:24 June 2014
Deposited On:29 Jan 2015 12:16
Last Modified:21 Nov 2017 17:47
Publisher:American Chemical Society
ISSN:0743-7463
Publisher DOI:https://doi.org/10.1021/la500634y
PubMed ID:24867091

Download