Header

UZH-Logo

Maintenance Infos

Towards a more realistic sink particle algorithm for the RAMSES CODE


Bleuler, A; Teyssier, R (2014). Towards a more realistic sink particle algorithm for the RAMSES CODE. Monthly Notices of the Royal Astronomical Society, 445(4):4015-4036.

Abstract

We present a new sink particle algorithm developed for the adaptive mesh refinement code RAMSES. Our main addition is the use of a clump finder to identify density peaks and their associated regions (the peak patches). This allows us to unambiguously define a discrete set of dense molecular cores as potential sites for sink particle formation. Furthermore, we develop a new scheme to decide if the gas in which a sink could potentially form, is indeed gravitationally bound and rapidly collapsing. This is achieved using a general integral form of the virial theorem, where we use the curvature in the gravitational potential to correctly account for the background potential. We detail all the necessary steps to follow the evolution of sink particles in turbulent molecular cloud simulations, such as sink production, their trajectory integration, sink merging and finally the gas accretion rate on to an existing sink. We compare our new recipe for sink formation to other popular implementations. Statistical properties such as the sink mass function, the average sink mass and the sink multiplicity function are used to evaluate the impact that our new scheme has on accurately predicting fundamental quantities such as the stellar initial mass function or the stellar multiplicity function.

Abstract

We present a new sink particle algorithm developed for the adaptive mesh refinement code RAMSES. Our main addition is the use of a clump finder to identify density peaks and their associated regions (the peak patches). This allows us to unambiguously define a discrete set of dense molecular cores as potential sites for sink particle formation. Furthermore, we develop a new scheme to decide if the gas in which a sink could potentially form, is indeed gravitationally bound and rapidly collapsing. This is achieved using a general integral form of the virial theorem, where we use the curvature in the gravitational potential to correctly account for the background potential. We detail all the necessary steps to follow the evolution of sink particles in turbulent molecular cloud simulations, such as sink production, their trajectory integration, sink merging and finally the gas accretion rate on to an existing sink. We compare our new recipe for sink formation to other popular implementations. Statistical properties such as the sink mass function, the average sink mass and the sink multiplicity function are used to evaluate the impact that our new scheme has on accurately predicting fundamental quantities such as the stellar initial mass function or the stellar multiplicity function.

Statistics

Citations

16 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

47 downloads since deposited on 23 Feb 2015
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:2014
Deposited On:23 Feb 2015 14:03
Last Modified:05 Apr 2016 19:00
Publisher:Oxford University Press
ISSN:0035-8711
Publisher DOI:https://doi.org/10.1093/mnras/stu2005

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 7MB
View at publisher
Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 5MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations