Evidence of CP violation in $B^+ \rightarrow p p^−K^+$ decays

LHCb Collaboration; Bernet, R; Müller, K; Steinkamp, O; Straumann, U; Vollhardt, A; Serra, N; et al

Abstract: Three-body $B^+ \rightarrow p p^−K^+$ and $B^+ \rightarrow p p^+K^+$ decays are studied using a data sample corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV. Evidence of CP violation in the $B^+ \rightarrow p p^−K^+$ decay is found in regions of the phase space, representing the first measurement of this kind for a final state containing baryons. Measurements of the forward-backward asymmetry of the light meson in the $p p^−$ rest frame yield $AFB(pp^−K^+, m_{pp^−}<2.85\text{GeV}/c^2) = 0.495\pm0.012\text{ (stat)}\pm0.007\text{ (syst)}$ and $AFB(pp^+, m_{pp^+}<2.85\text{GeV}/c^2) = -0.409\pm0.033\text{ (stat)}\pm0.006\text{ (syst)}$. In addition, the branching fraction of the decay $B^+ \rightarrow \Lambda(1520)p$ is measured to be $(B^+ \rightarrow \Lambda(1520)p) = (3.15\pm0.48\text{ (stat)}\pm0.07\text{ (syst)}\pm0.26\text{ (BF)})\times10^{-7}$, where BF denotes the uncertainty on secondary branching fractions.

DOI: https://doi.org/10.1103/PhysRevLett.113.141801

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-107701
Accepted Version

Originally published at:
LHCb Collaboration; Bernet, R; Müller, K; Steinkamp, O; Straumann, U; Vollhardt, A; Serra, N; et al (2014). Evidence of CP violation in $B^+ \rightarrow p p^−K^+$ decays. Physical Review Letters, 113(141801):online.
DOI: https://doi.org/10.1103/PhysRevLett.113.141801
Evidence for CP violation in \( B^+ \to p\bar{p}K^+ \) decays

The LHCb collaboration†

Abstract

Three-body \( B^+ \to p\bar{p}K^+ \) and \( B^+ \to p\bar{p}\pi^+ \) decays are studied using a data sample corresponding to an integrated luminosity of 3.0 fb\(^{-1} \) collected by the LHCb experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV. Evidence of CP violation in the \( B^+ \to p\bar{p}K^+ \) decay is found in regions of the phase space, representing the first measurement of this kind for a final state containing baryons. Measurements of the forward-backward asymmetry of the light meson in the \( p\bar{p} \) rest frame yield 
\[
A_{FB}(p\bar{p}K^+, \ m_{pp} < 2.85 \text{ GeV}/c^2) = 0.495 \pm 0.012 \text{ (stat)} \pm 0.007 \text{ (syst)}
\]
and 
\[
A_{FB}(p\bar{p}\pi^+, \ m_{pp} < 2.85 \text{ GeV}/c^2) = -0.409 \pm 0.033 \text{ (stat)} \pm 0.006 \text{ (syst)}.
\]
In addition, the branching fraction of the decay \( B^+ \to \Lambda(1520)p \) is measured to be 
\[
B(B^+ \to \Lambda(1520)p) = (3.15 \pm 0.48 \text{ (stat)} \pm 0.07 \text{ (syst)} \pm 0.26 \text{ (BF)}) \times 10^{-7},
\]
where BF denotes the uncertainty on secondary branching fractions.


© CERN on behalf of the LHCb collaboration, license [CC-BY-4.0]

†Authors are listed at the end of this article.
Direct \( CP \) violation can appear as a rate asymmetry in the decay of a particle and its \( CP \) conjugate, and can be observed when at least two amplitudes, carrying different weak and strong phases, contribute to the final state. For \( B \) mesons, it was observed for the first time in two-body \( B^0 \rightarrow K^+\pi^- \) decays \([1,2]\). The weak phases are sensitive to physics beyond the Standard Model that may appear at a high energy scale, and their extraction requires a determination of the relative strong phases. Three-body decays are an excellent laboratory for studying strong phases of interfering amplitudes. In particular, charmless decays of \( B^+ \) mesons, \( B^+ \rightarrow K^+\pi^-\pi^+, B^+ \rightarrow K^+K^-K^+, B^+ \rightarrow \pi^+\pi^-\pi^+, B^+ \rightarrow K^+K^-\pi^+ \) have been investigated recently \([3,5]\). Similar studies have been conducted for the baryonic final states \( B^+ \rightarrow p\bar{p}K^+ \) and \( B^+ \rightarrow p\bar{p}\pi^+ \) \([6]\). In the \( B^+ \rightarrow h^+h^-h^+ \) decays \((h = \pi \text{ or } K \) throughout this Letter\), large asymmetries, not necessarily associated to resonances, have been observed in the low \( K^+K^- \) and \( \pi^+\pi^- \) mass regions. These observations suggest that rescattering between \( \pi^+\pi^- \) and \( K^+K^- \) pairs may play an important role in the generation of the strong phase difference needed for \( CP \) violation to occur \([7]\). The \( B^+ \rightarrow p\bar{p}h^+ \) decays, although sharing the same quark-level diagrams, may exhibit different behavior due to the baryonic nature of two out of the three final-state particles.

This Letter reports the first evidence for \( CP \) violation in charmless \( B^+ \rightarrow p\bar{p}K^+ \) decays. These decays are studied in the region with invariant mass \( m_{p\bar{p}} < 2.85 \text{ GeV}/c^2 \), below the charmonium resonances threshold. In addition, a more accurate measurement of the branching fraction of the decay \( B^+ \rightarrow \Lambda(1520)\bar{p} \) is performed, using the reconstruction of \( \Lambda(1520) \rightarrow K^+\bar{p} \) decays, and improved determinations of the spectra and angular asymmetries are also reported. The mode \( B^+ \rightarrow J/\psi (\rightarrow p\bar{p})K^+ \) serves as a control channel. The data used have been collected with the LHCb detector and correspond to 1.0 and 2.0 \( fb^{-1} \) of integrated luminosity at 7 and 8 TeV center-of-mass energies in \( pp \) collisions, respectively. The data samples are analyzed separately and the results are averaged.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range \( 2 < \eta < 5 \), described in detail in Ref. \([8]\). The detector allows for the reconstruction of both charged and neutral particles. For this analysis, the ring-imaging Cherenkov (RICH) detectors \([9]\), distinguishing pions, kaons and protons, are particularly important.

The analysis uses simulated events generated by \textsc{Pythia} 8.1 \([10]\) with a specific LHCb configuration \([11]\). Decays of hadronic particles are described by \textsc{EvtGen} \([12]\) in which final state radiation is generated using \textsc{Photos} \([13]\). The interaction of the generated particles with the detector and its response are implemented using the \textsc{Geant4} toolkit \([14]\) as described in Ref. \([15]\). Nonresonant \( B^+ \rightarrow p\bar{p}h^+ \) events are simulated, uniformly distributed in phase space, to study the variation of efficiencies across the Dalitz \([16]\) plane, as well as resonant modes such as \( B^+ \rightarrow J/\psi (\rightarrow p\bar{p})K^+ \), \( B^+ \rightarrow \eta_c (\rightarrow p\bar{p})K^+ \), \( B^+ \rightarrow \psi(2S) (\rightarrow p\bar{p})K^+ \), \( B^+ \rightarrow \Lambda(1520) (\rightarrow K^+\bar{p})p \), and \( B^+ \rightarrow J/\psi (\rightarrow p\bar{p})\pi^+ \).

Three charged particles are combined to form \( B^+ \rightarrow p\bar{p}h^+ \) decay candidates. The discrimination of signal from background is done through a multivariate analysis using a boosted decision tree (BDT) classifier \([17]\). Input quantities include kinematical and

\[ ^1 \text{Throughout the Letter, the inclusion of charge conjugate processes is implied, except in the definition of } CP \text{ asymmetries.} \]
topological variables related to the \( B^+ \) candidates and the individual tracks. The momentum, vertex and flight distance of the \( B^+ \) candidate are exploited, and track fit quality criteria, impact parameter and momentum information of final-state particles are also used. The BDT is trained using simulated signal events, and events in the high sideband of the \( ppK^+ \) invariant mass \((5.4 < m(ppK^+) < 5.5 \text{ GeV}/c^2)\), which represent the background. Tight particle identification (PID) requirements are applied to reduce the combinatorial background and suppress the cross-feed between \( ppK^+ \) and \( pp\pi^+ \). The PID efficiencies are derived from calibration data samples of kinematically identified pions, kaons and protons originating from the decays \( D^{*+} \to D^0 (\to K^-\pi^+)\pi^+ \) and \( \Lambda \to p\pi^- \).

Signal and background yields are extracted using unbinned extended maximum likelihood fits to the invariant mass distribution of the \( ppK^+ \) combinations. The \( B^+ \to ppK^+ \) signal is modeled by the sum of two Crystal Ball functions [18], for which the common mean and core width are allowed to float in the fit. Beside the signal component, the fit includes the parameterizations of the combinatorial background and partially reconstructed \( B \to ppK^+ \) decays, where a pion from the \( K^* \) decay is not reconstructed, resulting in a \( ppK \) invariant mass below the nominal \( B \) mass. An asymmetric Gaussian function with power-law tails is used to model a possible \( pp\pi^+ \) cross-feed component, where the pion is misidentified as a kaon. This contribution is found to be small.

The fit to the \( B^+ \to pp\pi^+ \) decay uses similar parameterizations for the signal, combinatorial background, \( ppK^+ \) cross-feed and partially reconstructed background from \( B \to pp\rho \) decays (with a missing pion from the \( \rho \) decay). The cross-feed is found to be negligible.

The \( B^+ \to pph^+ \) invariant mass spectra are shown in Fig. 1. The signal yields obtained from the fits are \( N(ppK^\pm) = 18\,721 \pm 142 \) and \( N(pp\pi^\pm) = 1988 \pm 74 \), where the uncertainties are statistical only.

The distribution of events in the Dalitz plane, defined by \( (m_{pp}^2, m_{hp}^2) \) where \( hp \) denotes the neutral combinations \( h^-p \) and \( h^+\bar{p} \), is examined. From the fits to the \( B^+ \) candidate
invariant mass, shown in Fig. 1, signal weights are calculated with the sPlot technique [19]. These weights are corrected for trigger, reconstruction and selection efficiencies, which are estimated with simulated samples and calibration data. The Dalitz-plot variables are calculated constraining the $p\bar{p}h^+$ invariant mass to the known $B^+$ meson mass [20, 21]. Figure 2 shows the Dalitz distributions of the $B^+ \to p\bar{p}h^+$ events. Similarly to the results reported in Ref. [6,22], clear signals of $J/\psi$, $\eta_c$ and $\psi(2S)$ resonances are observed, while $B^+ \to p\bar{p}K^+$ and $B^+ \to p\bar{p}\pi^+$ non-charmonium events both accumulate near the $p\bar{p}$ threshold. However, $B^+ \to p\bar{p}K^+$ events preferentially occupy the region with low $Kp$ invariant mass while $B^+ \to p\bar{p}\pi^+$ events populate the region with large $\pi p$ invariant mass. This difference in the Dalitz distribution can also be observed as a difference in the distribution of the helicity angle $\theta_p$ of the $p\bar{p}$ system, defined as the angle between the charged meson $h$ and the oppositely charged baryon in the rest frame of the $p\bar{p}$ system. The distributions of $\cos(\theta_p)$ are depicted in Fig. 3.

Data and simulation are used to assign systematic uncertainties, accounting for the
Figure 4: Forward-backward asymmetry in bins of $m_{\bar{p}p}$ for $B^+ \to \bar{p}pK^+$ and $B^+ \to \bar{p}p\pi^+$ decays. The data points are shown with their total uncertainties.

PID correction and fit model, to the angular and charge asymmetries, and to the relative branching fractions. The systematic uncertainty associated to the PID correction cancels in the asymmetry measurements.

The forward-backward asymmetry is measured as

$$A_{FB} = \frac{N_{pos} - N_{neg}}{N_{pos} + N_{neg}},$$

where $N_{pos}$ ($N_{neg}$) is the efficiency-corrected yield for $\cos \theta_p > 0$ ($\cos \theta_p < 0$). The obtained asymmetries are $A_{FB}(\bar{p}pK^+, \ m_{\bar{p}p} < 2.85 \text{ GeV}/c^2) = 0.495 \pm 0.012 \text{ (stat)} \pm 0.007 \text{ (syst)}$ and $A_{FB}(\bar{p}p\pi^+, \ m_{\bar{p}p} < 2.85 \text{ GeV}/c^2) = -0.409 \pm 0.033 \text{ (stat)} \pm 0.006 \text{ (syst)}$, where the systematic uncertainty is due to the ratio of average efficiencies in the regions $\cos \theta_p > 0$ and $\cos \theta_p < 0$. As reported in previous studies [6,23], the value for $B^+ \to \bar{p}\bar{p}K^+$ contradicts the short-range analysis expectation [24]. The values of $A_{FB}$ in bins of $m_{\bar{p}p}$ are shown in Fig. 4; in both cases, they depend strongly on $m_{\bar{p}p}$.

The yields of the decays $B^+ \to \bar{p}p\bar{h}^+$ in the region $m_{\bar{p}p} < 2.85 \text{ GeV}/c^2$ are obtained in the same way as for the integrated signals. Those of the resonant modes are extracted through two-dimensional extended unbinned maximum likelihood fits to invariant mass distributions of $\bar{p}p\bar{h}^+$ and $\bar{p}\bar{p}$ or $K^+\bar{p}$, using the same signal and background models for $m_{\bar{p}p}$ or $m_{K^+\bar{p}}$ as in Ref. [6]. The results are shown in Table 1. The branching fractions of the decays $B^+ \to \bar{A}(1520)(\to K^+\bar{p})p$ and $B^+ \to \bar{p}\bar{p}\pi^+$, $m_{\bar{p}p} < 2.85 \text{ GeV}/c^2$ are measured relative to the $J/\psi$ modes as

$$\frac{\mathcal{B}(B^+ \to \bar{A}(1520)(\to K^+\bar{p})p)}{\mathcal{B}(B^+ \to J/\psi (\to \bar{p}\bar{p})K^+)} = 0.033 \pm 0.005 \text{ (stat)} \pm 0.007 \text{ (syst)},$$

$$\frac{\mathcal{B}(B^+ \to \bar{p}\bar{p}\pi^+, \ m_{\bar{p}p} < 2.85 \text{ GeV}/c^2)}{\mathcal{B}(B^+ \to J/\psi (\to \bar{p}\bar{p})\pi^+)} = 12.0 \pm 1.2 \text{ (stat)} \pm 0.3 \text{ (syst)}.$$

The systematic uncertainties also include contributions from the background model. Using $\mathcal{B}(B^+ \to J/\psi K^+) = (1.016 \pm 0.033) \times 10^{-3}$, $\mathcal{B}(B^+ \to J/\psi \pi^+) = (4.1 \pm 0.4) \times 10^{-5}$,
where BF denotes the uncertainty on the aforementioned secondary branching fractions.

The Dalitz plane. Physical asymmetries are obtained after acceptance correction (ACP).

Table 1: Event yields and selection efficiency for $B^+ \to p\bar{p}K^+$ and $B^+ \to p\bar{p}\pi^+$ final states.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yield</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \to J/\psi(\to p\bar{p})K^+$</td>
<td>4260±67</td>
<td>1.55±0.02</td>
</tr>
<tr>
<td>$B^+ \to \eta_c(\to p\bar{p})K^+$</td>
<td>2182±64</td>
<td>1.47±0.02</td>
</tr>
<tr>
<td>$B^+ \to \psi(2S)(\to p\bar{p})K^+$</td>
<td>368±20</td>
<td>1.59±0.02</td>
</tr>
<tr>
<td>$B^+ \to \Lambda(1520)(\to K^+p)p$</td>
<td>128±20</td>
<td>1.39±0.01</td>
</tr>
<tr>
<td>$B^+ \to p\bar{p}K^+, m_{p\bar{p}} &lt; 2.85 \text{GeV}/c^2$</td>
<td>8510±104</td>
<td>1.58±0.02</td>
</tr>
<tr>
<td>$B^+ \to J/\psi(\to p\bar{p})\pi^+$</td>
<td>122±12</td>
<td>1.07±0.01</td>
</tr>
<tr>
<td>$B^+ \to p\bar{p}\pi^+, m_{p\bar{p}} &lt; 2.85 \text{GeV}/c^2$</td>
<td>1632±64</td>
<td>1.15±0.01</td>
</tr>
</tbody>
</table>

The raw charge asymmetry is measured from the yields $N$ as

$$A_{raw} = \frac{N(B^- \to p\bar{p}h^-) - N(B^+ \to p\bar{p}h_+)}{N(B^- \to p\bar{p}h^-) + N(B^+ \to p\bar{p}h_+)}$$

and is investigated in the Dalitz plane using signal weights inferred from the fits shown in Fig. 1 for $B^-$ and $B^+$ samples. This asymmetry includes production and detection asymmetries. The statistics of the $B^\pm \to p\bar{p}\pi^\pm$ decays is not sufficient to perform such an analysis, so only the $B^\pm \to p\bar{p}K^\pm$ case is studied. An adaptive binning algorithm is used so that the sum of $B^-$ and $B^+$ events in each bin is approximately constant. Figure 5 shows the distribution of $A_{raw}$ in the Dalitz plane. A clear pattern is observed near the $p\bar{p}$ threshold where $A_{raw}$ is negative for $m_{Kp}^2 < 10 \text{GeV}^2/c^4$ and positive for $m_{Kp}^2 > 10 \text{GeV}^2/c^4$. Figure 6 shows the $m_{p\bar{p}}$ projections of $N(B^-) - N(B^+)$ in the regions of interest.

To quantify the effect, unbinned extended maximum likelihood simultaneous fits to $B^-$ and $B^+$ samples are performed in regions of the Dalitz plane, using the same models as the global fits. The raw asymmetry is corrected for acceptance, by taking into account the small difference in average efficiency due to the $B^-$ and $B^+$ samples populating differently the Dalitz plane. Physical asymmetries are obtained after acceptance correction ($A_{raw}$) and accounting for the production $A_P(B^\pm)$ and kaon detection $A_{det}(K^\pm)$ asymmetries:

$$A_{CP} = A_{raw} - A_P(B^\pm) - A_{det}(K^\pm)$$

The decay $B^\pm \to J/\psi(p\bar{p})K^\pm$, part of the selected sample, is used to determine $A_{\Delta} = A_P(B^\pm) + A_{det}(K^\pm)$:

$$A_{\Delta} = A_{raw}(B^\pm \to J/\psi(p\bar{p})K^\pm) - A_{CP}(B^\pm \to J/\psi K^\pm).$$
Figure 5: Asymmetries of the number of signal events in bins of the Dalitz-plot variables for \(B^\pm \rightarrow p\bar{p}K^\pm\). The number of events in each bin is approximately 300.

Figure 6: \(N(B^-) - N(B^+)\) in bins of \(m_{p\bar{p}}^2\) for \(m_{Kp}^2 < 10 \text{ GeV}^2/c^4\) (black filled circles) and \(m_{Kp}^2 > 10 \text{ GeV}^2/c^4\) (open triangles).

The value \(A_{CP}(B^\pm \rightarrow J/\psi K^\pm) = (0.6 \pm 0.4)\%\) is taken from Ref. [26]. When using \(A_{raw}(B^\pm \rightarrow J/\psi (p\bar{p})K^\pm)\), differences in the momentum asymmetry of the \(p\bar{p}\) pair between \(B^\pm \rightarrow J/\psi (p\bar{p})K^\pm\) and nonresonant \(B^\pm \rightarrow p\bar{p}K^\pm\) decays are accounted for. A similar procedure is applied to obtain \(A_{CP}(B^\pm \rightarrow \eta_c(p\bar{p})K^\pm)\) and \(A_{CP}(B^\pm \rightarrow \psi(2S)(p\bar{p})K^\pm)\). The \(B^\pm \rightarrow p\bar{p}\pi^\pm\) decays are also considered in the region \(m_{p\bar{p}} < 2.85 \text{ GeV}/c^2\). In this case, the correction also involves the pion detection asymmetry, \(A_{\Delta} = A_{raw}(B^\pm \rightarrow J/\psi (p\bar{p})K^\pm) - A_{CP}(B^\pm \rightarrow J/\psi K^\pm) - A_{det}(K^\pm) + A_{det}(\pi^\pm)\). The value \(A_{det}(K^\pm) - A_{det}(\pi^\pm) = (-1.2 \pm 0.1)\%\) is taken from studies of prompt \(D^+\) decays [27]. Table 2 shows the results, including asymmetries of resonant modes. Closer to the \(p\bar{p}\) threshold enhancement, \(m_{p\bar{p}}^2 < 6 \text{ GeV}^2/c^4\), the asymmetry is found to reach the value \(-0.066 \pm 0.026 \text{ (stat)} \pm 0.004 \text{ (syst)}\), for \(m_{Kp}^2 < 10 \text{ GeV}^2/c^4\).
Table 2: CP asymmetries for $B^\pm \to p\bar{p}K^\pm$ and $B^\pm \to p\bar{p}\pi^\pm$ decays. The systematic uncertainties are dominated by the precision on the measurement $A_{CP}(B^\pm \to J/\psi K^\pm)$.

<table>
<thead>
<tr>
<th>Mode/region</th>
<th>$A_{CP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_c(p\bar{p})K^\pm$</td>
<td>0.040±0.034 (stat)±0.004 (syst)</td>
</tr>
<tr>
<td>$\psi(2S)(p\bar{p})K^\pm$</td>
<td>0.092±0.058 (stat)±0.004 (syst)</td>
</tr>
<tr>
<td>$p\bar{p}K^\pm$, $m_{p\bar{p}} &lt; 2.85$ GeV/GeV</td>
<td>0.021±0.020 (stat)±0.004 (syst)</td>
</tr>
<tr>
<td>$p\bar{p}K^\pm$, $m_{p\bar{p}} &lt; 2.85$ GeV/GeV, $m_{Kp}^2 &lt; 10$ GeV$^2$/GeV$^4$</td>
<td>= -0.036±0.023 (stat)±0.004 (syst)</td>
</tr>
<tr>
<td>$p\bar{p}K^\pm$, $m_{p\bar{p}} &lt; 2.85$ GeV/GeV, $m_{Kp}^2 &gt; 10$ GeV$^2$/GeV$^4$</td>
<td>0.096±0.024 (stat)±0.004 (syst)</td>
</tr>
<tr>
<td>$p\bar{p}\pi^\pm$, $m_{p\bar{p}} &lt; 2.85$ GeV/GeV</td>
<td>= -0.041±0.039 (stat)±0.005 (syst)</td>
</tr>
</tbody>
</table>

The systematic uncertainties are estimated by using alternative fit functions and splitting the data sample according to trigger requirements and magnet polarity. The overall systematic uncertainties are dominated by the uncertainty on the $A_{CP}(B^\pm \to J/\psi K^\pm)$ measurement.

In summary, an interesting sign-inversion pattern of the CP asymmetry appears at low $p\bar{p}$ invariant masses in $B^\pm \to p\bar{p}K^\pm$ decays. Although this resembles what is observed at low $h^+h^-$ masses in the $B^\pm \to h^\pm h^+h^-\to h^\pm h^+h^-\to h^\pm h^+h^-\to h^\pm h^+h^-$ decays, the strong phase difference could involve a specific mechanism such as interfering long-range $p\bar{p}$ waves with different angular momenta [24]. In the region $m_{p\bar{p}} < 2.85$ GeV/GeV$^2$, $m_{Kp}^2 > 10$ GeV$^2$/GeV$^4$, the measured asymmetry is positive with a significance of nearly 4$\sigma$, which represents the first evidence of CP violation in b-hadron decays with baryons in the final state. In the region ($m_{p\bar{p}}^2 < 6$ GeV$^2$/GeV$^4$, $m_{Kp}^2 < 10$ GeV$^2$/GeV$^4$), the asymmetry is negative with a significance of 2.5$\sigma$. The $h$ hadron forward-backward asymmetry in non-charmonium $B^+ \to p\bar{p}h^+$ decays is measured as $A_{FB}(p\bar{p}K^\pm)$, $m_{p\bar{p}} < 2.85$ GeV/GeV$^2$ = 0.495±0.012 (stat)±0.007 (syst) and $A_{FB}(p\bar{p}\pi^\pm)$, $m_{p\bar{p}} < 2.85$ GeV/GeV$^2$ = -0.409±0.033 (stat)±0.006 (syst). These asymmetries could be interpreted as being due to the dominance of nonresonant $p\bar{p}$ scattering [24]. Finally, an improved measurement of $B(B^+ \to \Lambda(1520)p) = (3.15 \pm 0.48$ (stat)±0.07 (syst)±0.26 (BF)) $\times 10^{-7}$ is obtained.

**Acknowledgements**

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); STFC (United Kingdom); NSC and ETF (Turkey); CSF (Ukraine); NASU (Ukraine); STFC (United Kingdom); NSF (USA). The Tier1 computing centres are supported by IN2P3 (France),
KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom).

References


[4] LHCb collaboration, R. Aaij et al., Measurement of CP violation in the phase space of $B^\pm \to K^\mp K^\pm\pi^\pm$ and $B^\pm \to \pi^+\pi^-\pi^\pm$ decays, Phys. Rev. Lett. 112 (2014) 011801, arXiv:1310.4740.


[26] D0 collaboration, V. M. Abazov et al., Measurement of direct CP violation parameters in $B^\pm \to J/\psi K^\pm$ and $B^\pm \to J/\psi \pi^\pm$ decays with $10.4 \text{ fb}^{-1}$ of Tevatron data, Phys. Rev. Lett. 110 (2013) 241801, arXiv:1304.1655.

[27] LHCb collaboration, R. Aaij et al., Measurement of CP asymmetry in $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ decays, JHEP 07 (2014) 041, arXiv:1405.2797.
LHCb collaboration

Sezione INFN di Pisa, Pisa, Italy
Sezione INFN di Roma Tor Vergata, Roma, Italy
Sezione INFN di Roma La Sapienza, Roma, Italy
Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
National Center for Nuclear Research (NCBJ), Warsaw, Poland
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
Institute for High Energy Physics (IHEP), Protvino, Russia
Universitat de Barcelona, Barcelona, Spain
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Syracuse University, Syracuse, NY, United States
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to 3
Institut für Physik, Universität Rostock, Rostock, Germany, associated to 11
National Research Centre Kurchatov Institute, Moscow, Russia, associated to 31
Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to 36
KVI - University of Groningen, Groningen, The Netherlands, associated to 41
Celal Bayar University, Manisa, Turkey, associated to 38

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Firenze, Firenze, Italy
Università di Urbino, Urbino, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
Università della Basilicata, Potenza, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Viet Nam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore, Pisa, Italy
Università degli Studi di Milano, Milano, Italy