Measurement of CP violation in $B^0_s \rightarrow \pi\pi$ decays

LHCb Collaboration; Bernet, R; Müller, K; Steinkamp, O; Straumann, U; Serra, N; Vollhardt, A; et al

Abstract: A measurement of the decay time dependent CP-violating asymmetry in $B^0_s \rightarrow \pi\pi$ decays is presented, along with measurements of the T-odd triple-product asymmetries. In this decay channel, the CP-violating weak phase arises from the interference between B^0_s-B^0 mixing and the loop-induced decay amplitude. Using a sample of proton-proton collision data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected with the LHCb detector, a signal yield of approximately 4000 $B^0_s \rightarrow \pi\pi$ decays is obtained. The CP-violating phase is measured to be $\phi_s = -0.17 \pm 0.15\text{(stat)} \pm 0.03\text{(syst)}$ rad. The triple-product asymmetries are measured to be $A_U = -0.003 \pm 0.017\text{(stat)} \pm 0.006\text{(syst)}$ and $A_V = -0.017 \pm 0.017\text{(stat)} \pm 0.006\text{(syst)}$. Results are consistent with the hypothesis of CP conservation.

DOI: https://doi.org/10.1103/PhysRevD.90.05201111v=5b44bbd4

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-107711
Accepted Version

Originally published at:
LHCb Collaboration; Bernet, R; Müller, K; Steinkamp, O; Straumann, U; Serra, N; Vollhardt, A; et al (2014). Measurement of CP violation in $B^0_s \rightarrow \pi\pi$ decays. Physical Review D (Particles, Fields, Gravitation and Cosmology), 90:052011.
DOI: https://doi.org/10.1103/PhysRevD.90.05201111v=5b44bbd4
Measurement of CP violation in $B^0_s \rightarrow \phi\phi$ decays

The LHCb collaboration

Abstract
A measurement of the decay time dependent CP-violating asymmetry in $B^0_s \rightarrow \phi\phi$ decays is presented, along with measurements of the T-odd triple-product asymmetries. In this decay channel, the CP-violating weak phase arises from the interference between B^0_s-\bar{B}^0_s mixing and the loop-induced decay amplitude. Using a sample of proton-proton collision data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected with the LHCb detector, a signal yield of approximately 4000 $B^0_s \rightarrow \phi\phi$ decays is obtained. The CP-violating phase is measured to be $\phi_s = -0.17 \pm 0.15$ (stat) ± 0.03 (syst) rad. The triple-product asymmetries are measured to be $A_U = -0.003 \pm 0.017$ (stat) ± 0.006 (syst) and $A_V = -0.017 \pm 0.017$ (stat) ± 0.006 (syst). Results are consistent with the hypothesis of CP conservation.
1 Introduction

The $B^0_s \to \phi\phi$ decay is forbidden at tree level in the Standard Model (SM) and proceeds predominantly via a gluonic $\bar{b} \to s\bar{s}s$ loop (penguin) process. Hence, this channel provides an excellent probe of new heavy particles entering the penguin quantum loops \cite{1}–\cite{3}. In the SM, CP violation is governed by a single phase in the Cabibbo-Kobayashi-Maskawa quark mixing matrix \cite{4}. Interference between the $B^0_s\to\bar{B}^0_s$ oscillation and decay amplitudes leads to a CP asymmetry in the decay time distributions of B^0_s and \bar{B}^0_s mesons, which is characterised by a CP-violating weak phase. Due to different decay amplitudes the actual value of the weak phase is dependent on the B^0_s decay channel. For $B^0_s \to J/\psi K^+K^-$ and $B^0_s \to J/\psi \pi^+\pi^-$ decays, which proceed via $\bar{b} \to s\bar{s}c$ transitions, the SM prediction of the weak phase is given by $-2 \arg (-V_{ts}V^*_t/|V_{cs}V^*_s|) = -0.0364 \pm 0.0016$ rad \cite{5}. The LHCb collaboration has measured the weak phase in the combination of $B^0_s \to J/\psi K^+K^-$ and $B^0_s \to J/\psi \pi^+\pi^-$ decays to be 0.07 ± 0.09 (stat) ± 0.01 (syst) rad \cite{6}. A recent analysis of $B^0_s \to J/\psi \pi^+\pi^-$ decays using the full LHCb Run I dataset of 3.0 fb$^{-1}$ has measured the CP-violating phase to be 0.070 ± 0.068 (stat) ± 0.008 (syst) rad \cite{7}. These measurements are consistent with the SM and place stringent constraints on CP violation in $B^0_s\to\bar{B}^0_s$ oscillations \cite{8}. The CP-violating phase, ϕ_s, in the $B^0_s \to \phi\phi$ decay is expected to be small in the SM. Calculations using quantum chromodynamics factorisation (QCDf) provide an upper limit of 0.02 rad for $|\phi_s|$ \cite{1}–\cite{3}.

Triple-product asymmetries are formed from T-odd combinations of the momenta of the final state particles. Such asymmetries provide a method of measuring CP violation in a decay time integrated method that complements the decay time dependent measurement \cite{9}. These asymmetries are calculated from functions of the angular observables and are expected to be close to zero in the SM \cite{10}. Particle-antiparticle oscillations reduce non-zero triple-product asymmetries due to CP-conserving strong phases, known as “fake” triple-product asymmetries by a factor $\Gamma/|\Delta m|$, where Γ and Δm are the decay rates and oscillation frequencies of the neutral meson system in question. Since one has $\Gamma_s/|\Delta m_s| \approx 0.04$ for the B^0_s system, “fake” triple-product asymmetries are strongly suppressed, allowing for “true” CP-violating triple-product asymmetries to be calculated without the need to measure the initial flavour of the B^0_s meson \cite{9}.

Theoretical calculations can be tested further with measurements of the polarisation fractions, where the longitudinal and transverse polarisation fractions are denoted by f_L and f_T, respectively. In the heavy quark limit, f_L is expected to be the dominant polarisation due to the vector-axial structure of charged weak currents \cite{2}. This is found to be the case for tree-level B decays measured at the B factories \cite{11}–\cite{16}. However, the dynamics of penguin transitions are more complicated. In the context of QCDf, f_L is predicted to be $0.36^{+0.23}_{-0.18}$ for the $B^0_s \to \phi\phi$ decay \cite{3}.

In this paper, a measurement of the CP-violating phase in $B^0_s \to \phi(\to K^+K^-)\phi(\to K^+K^-)$ decays, along with a measurement of the T-odd triple-product asymmetries is presented. The results are based on pp collision data corresponding to an integrated luminosity of 1.0 fb$^{-1}$ and 2.0 fb$^{-1}$ collected by the LHCb experiment at centre-of-mass energies $\sqrt{s} = 7$ TeV in 2011 and 8 TeV in 2012, respectively. Previous measurements of
the triple-product asymmetries from the LHCb [17] and CDF [18] collaborations, together with the first measurement of the CP-violating phase in $B^0_s \rightarrow \phi\phi$ decays [19], have shown no evidence of deviations from the SM. The decay time dependent measurement improves on the previous analysis [19] through the use of a more efficient candidate selection and improved knowledge of the B^0_s flavour at production, in addition to a data-driven determination of the efficiency as a function of decay time.

The results presented in this paper supersede previous measurements of the CP-violating phase [19] and T-odd triple-product asymmetries [17], made using 1.0 fb$^{-1}$ of data collected at a $\sqrt{s} = 7$ TeV.

2 Detector description

The LHCb detector [20] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes [21] placed downstream. The combined tracking system provides a momentum measurement with relative uncertainty that varies from 0.4% at low momentum to 0.6% at 100 GeV/c, and impact parameter resolution of 20 μm for tracks with large transverse momentum, p_T. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov (RICH) detectors [22]. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. The trigger [23] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. The hardware trigger selects $B^0_s \rightarrow \phi\phi$ candidates by requiring large transverse energy deposits in the calorimeters from at least one of the final state particles. In the software trigger, $B^0_s \rightarrow \phi\phi$ candidates are selected either by identifying events containing a pair of oppositely charged kaons with an invariant mass close to that of the ϕ meson or by using a topological b-hadron trigger. The topological software trigger requires a two-, three- or four-track secondary vertex with a large sum of the p_T of the charged particles and a significant displacement from the primary pp interaction vertices (PVs). At least one charged particle should have $p_T > 1.7$ GeV/c and χ^2_{IP} with respect to any primary interaction greater than 16, where χ^2_{IP} is defined as the difference in χ^2 of a given PV fitted with and without the considered track. A multivariate algorithm [24] is used for the identification of secondary vertices consistent with the decay of a b-hadron.

In the simulation, pp collisions are generated using PYTHIA [25] with a specific LHCb configuration [26]. Decays of hadronic particles are described by EvtGen [27], in which final state radiation is generated using PHOTOS [28]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [29] as described in Ref. [30].
3 Selection and mass model

Events passing the trigger are initially required to pass loose requirements on the fit quality of the four-kaon vertex fit, the \(\chi^2_{IP} \) of each track, the transverse momentum of each particle, and the product of the transverse momenta of the two \(\phi \) candidates. In addition, the reconstructed mass of \(\phi \) meson candidates is required to be within 25 MeV/\(c^2 \) of the known \(\phi \) mass \[31\].

In order to further separate the \(B_s^0 \to \phi \phi \) signal from the background, a boosted decision tree (BDT) is implemented \[32,33\]. To train the BDT, simulated \(B_s^0 \to \phi \phi \) events passing the same loose requirements as the data events are used as signal, whereas events in the four-kaon invariant mass sidebands from data are used as background. The signal mass region is defined to be less than 120 MeV/\(c^2 \) from the known \(B_s^0 \) mass, \(m_{B_s^0} \) \[31\]. The invariant mass sidebands are defined to be inside the region \(120 < |m_{K^+K^-K^+K^-} - m_{B_s^0}| < 300 \) MeV/\(c^2 \), where \(m_{K^+K^-K^+K^-} \) is the four-kaon invariant mass. Separate BDTs are trained for data samples collected in 2011 and 2012, due to different data taking conditions in the different years. Variables used in the BDT consist of the minimum and maximum kaon \(p_T \) and \(\eta \), the minimum and the maximum \(p_T \) and \(\eta \) of the \(\phi \) candidates, the \(p_T \) and \(\eta \) of the \(B_s^0 \) candidate, the minimum probability of the kaon mass hypothesis using information from the RICH detectors, the quality of the four-kaon vertex fit, and the \(\chi^2_{IP} \) of the \(B_s^0 \) candidate. The BDT also includes kaon isolation asymmetries. The isolation variable is calculated as the scalar sum of the \(p_T \) of charged particles inside a region defined as \(\sqrt{\Delta \varphi^2 + \Delta \eta^2} < 1 \), where \(\Delta \varphi \) (\(\Delta \eta \)) is the difference in azimuthal angle (pseudorapidity), not including the signal kaon from the \(B_s^0 \) decay. The asymmetry is then calculated as the difference between the isolation variable and the \(p_T \) of the signal kaon, divided by the sum. After the BDT is trained, the optimum requirement on each BDT is chosen to maximise \(N_S/\sqrt{N_S + N_B} \), where \(N_S \) (\(N_B \)) represent the expected number of signal (background) events in the signal region of the data sample.

The presence of peaking backgrounds is extensively studied. The decay modes considered include \(B^+ \to \phi K^+ \), \(B^0 \to \phi \pi^+\pi^- \), \(B^0 \to \phi K^{*0} \), and \(A_0^0 \to \phi \pi K^- \), of which only the last two are found to contribute, and are the result of a mis-identification of a pion or proton as a kaon, respectively. The number of \(B^0 \to \phi K^{*0} \) events present in the data sample is determined from scaling the number of \(B^0 \to \phi K^{*0} \) events seen in data through a different dedicated selection with the relative efficiencies between the two selections found from simulated events. This method yields values of \(7.3 \pm 0.4 \) and \(17.8 \pm 0.9 \) events in the 2011 and 2012 datasets, respectively. The amount of \(A_0^0 \to \phi \pi K^- \) decays is estimated directly from data by changing the mass hypothesis of the final-state particle most likely to have the mass of the proton from RICH detector information. This method yields \(52 \pm 19 \) and \(51 \pm 29 \) \(A_0^0 \to \phi \pi K^- \) events in the 2011 and 2012 datasets, respectively.

In order to correctly determine the number of \(B_s^0 \to \phi \phi \) events in the final data sample, the four-kaon invariant mass distributions are fitted with the \(B_s^0 \to \phi \phi \) signal described by a double Gaussian model, and the combinatorial background component described using an exponential function. The peaking background contributions are fixed to the shapes found in simulated events. The yields of the peaking background contributions
Figure 1: Four-kaon invariant mass distributions for the (left) 2011 and (right) 2012 datasets. The data points are represented by the black markers. Superimposed are the results of the total fit (red solid line), the $B^0_s \rightarrow \phi \phi$ (red long dashed), the $B^0 \rightarrow \phi K^{*0}$ (blue dotted), the $A^0_b \rightarrow \phi p K^-$ (green short-dashed), and the combinatoric (purple dotted) fit components. The use of the four-kaon invariant mass to assign signal weights allows for a decay time dependent fit to be performed with only the signal distribution explicitly described. The method for assigning the signal weights is described in greater detail in Sec. 8.1.

4 Phenomenology

The $B^0_s \rightarrow \phi \phi$ decay is composed of a mixture of CP eigenstates, that are disentangled by means of an angular analysis in the helicity basis, defined in Fig. 2.

4.1 Decay time dependent model

The $B^0_s \rightarrow \phi \phi$ decay is a $P \rightarrow VV$ decay, where P denotes a pseudoscalar and V a vector meson. However, due to the proximity of the ϕ resonance to that of the $f_0(980)$, there will also be contributions from S-wave ($P \rightarrow VS$) and double S-wave ($P \rightarrow SS$) processes,
Figure 2: Decay angles for the $B_0^+ \rightarrow \phi \phi$ decay, where the K^+ momentum in the $\phi_{1,2}$ rest frame and the parent $\phi_{1,2}$ momentum in the rest frame of the B_0^+ meson span the two ϕ meson decay planes, $\theta_{1,2}$ is the angle between the K^+ track momentum in the $\phi_{1,2}$ meson rest frame and the parent $\phi_{1,2}$ momentum in the B_0^+ rest frame, Φ is the angle between the two ϕ meson decay planes and $\hat{n}_{V_{1,2}}$ is the unit vector normal to the decay plane of the $\phi_{1,2}$ meson.

where S denotes a spin-0 meson or a pair of non-resonant kaons. Thus the total amplitude is a coherent sum of $P-$, $S-$, and double S-wave processes, and is accounted for during fitting by making use of the different functions of the helicity angles associated with these terms. The choice of which ϕ meson is used to determine θ_1 and which is used to determine θ_2 is randomised. The total amplitude (\mathcal{A}) containing the $P-$, $S-$, and double S-wave components as a function of decay time, t, can be written as

$$\mathcal{A}(t, \theta_1, \theta_2, \Phi) = A_0(t) \cos \theta_1 \cos \theta_2 + \frac{A_y(t)}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \cos \Phi$$

$$+ i \frac{A_\perp(t)}{\sqrt{2}} \sin \theta_1 \sin \theta_2 \sin \Phi + \frac{A_S(t)}{\sqrt{3}} (\cos \theta_1 + \cos \theta_2) + \frac{A_{SS}(t)}{3},$$

where A_0, A_\perp, and A_S are the CP-even longitudinal, CP-even parallel, and CP-odd perpendicular polarisations of the $B_0^+ \rightarrow \phi \phi$ decay. The $P \rightarrow VS$ and $P \rightarrow SS$ processes are described by the A_S and A_{SS} amplitudes, respectively. The differential decay rate may be found through the square of the total amplitude leading to the 15 terms

$$\frac{d\Gamma}{dt \, d\cos \theta_1 \, d\cos \theta_2 \, d\Phi} \propto 4 |\mathcal{A}(t, \theta_1, \theta_2, \Phi)|^2 = \sum_{i=1}^{15} K_i(t) f_i(\theta_1, \theta_2, \Phi).$$

The $K_i(t)$ term can be written as

$$K_i(t) = N_i e^{-\Gamma_i t} \left[c_i \cos(\Delta m_i t) + d_i \sin(\Delta m_i t) + a_i \cosh \left(\frac{1}{2} \Delta \Gamma_i t \right) + b_i \sinh \left(\frac{1}{2} \Delta \Gamma_i t \right) \right],$$

where Δm_i and $\Delta \Gamma_i$ are the mass and width differences, respectively, and N_i is the decay rate.
Table 1: Coefficients of the time dependent terms and angular functions used in Eq. 2. Amplitudes are defined at $t = 0$.

<table>
<thead>
<tr>
<th>i</th>
<th>N_i</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
<th>f_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$</td>
<td>A_0</td>
<td>^2$</td>
<td>1</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>$</td>
<td>A_1</td>
<td>^2$</td>
<td>1</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>$</td>
<td>A_0</td>
<td></td>
<td>A_1</td>
<td>$</td>
<td>$C \sin \delta_1$</td>
</tr>
<tr>
<td>4</td>
<td>$</td>
<td>A_0</td>
<td></td>
<td>A_2</td>
<td>$</td>
<td>$\cos(\delta_{2,1})$</td>
</tr>
<tr>
<td>5</td>
<td>$</td>
<td>A_0</td>
<td></td>
<td>A_3</td>
<td>$</td>
<td>$C \sin \delta_2$</td>
</tr>
<tr>
<td>6</td>
<td>$</td>
<td>A_0</td>
<td></td>
<td>A_4</td>
<td>$</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>$</td>
<td>A_{SS}</td>
<td>^2$</td>
<td>1</td>
<td>$-D$</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>$</td>
<td>A_S</td>
<td>^2$</td>
<td>1</td>
<td>$-D$</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>$</td>
<td>A_S</td>
<td></td>
<td>A_{SS}</td>
<td>$</td>
<td>$C \cos(\delta_S - \delta_{SS})$</td>
</tr>
<tr>
<td>10</td>
<td>$</td>
<td>A_0</td>
<td></td>
<td>A_{SS}</td>
<td>$</td>
<td>$\cos \delta_S$</td>
</tr>
<tr>
<td>11</td>
<td>$</td>
<td>A_1</td>
<td></td>
<td>A_{SS}</td>
<td>$</td>
<td>$\cos(\delta_{2,1} - \delta_{SS})$</td>
</tr>
<tr>
<td>12</td>
<td>$</td>
<td>A_1</td>
<td></td>
<td>A_{SS}</td>
<td>$</td>
<td>$C \sin(\delta_2 - \delta_{SS})$</td>
</tr>
<tr>
<td>13</td>
<td>$</td>
<td>A_0</td>
<td></td>
<td>A_s</td>
<td>$</td>
<td>$C \cos \delta_S$</td>
</tr>
<tr>
<td>14</td>
<td>$</td>
<td>A_1</td>
<td></td>
<td>A_s</td>
<td>$</td>
<td>$C \cos(\delta_{2,1} - \delta_S)$</td>
</tr>
<tr>
<td>15</td>
<td>$</td>
<td>A_2</td>
<td></td>
<td>A_s</td>
<td>$</td>
<td>$\sin(\delta_2 - \delta_S)$</td>
</tr>
</tbody>
</table>

where the coefficients are shown in Table 1. $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H$ is the decay width difference between the light and heavy B^0_s mass eigenstates, $\Gamma_s \equiv (\Gamma_L + \Gamma_H)/2$ is the average decay width, and Δm_s is the $B^0_s - \bar{B}^0_s$ oscillation frequency. The differential decay rate for a B^0_s meson produced at $t = 0$ is obtained by changing the sign of the c_i and d_i coefficients.

The three CP-violating terms introduced in Table 1 are defined as

\begin{align*}
C &\equiv \frac{1 - |\lambda|^2}{1 + |\lambda|^2}, \\
S &\equiv -\frac{2|\lambda| \sin \phi_s}{1 + |\lambda|^2}, \\
D &\equiv -\frac{2|\lambda| \cos \phi_s}{1 + |\lambda|^2},
\end{align*}

where ϕ_s measures CP violation in the interference between the direct decay amplitude and that via mixing, $\lambda \equiv (q/p)(\bar{A}/A)$, q and p are the complex parameters relating the B^0_s flavour and mass eigenstates, and A (\bar{A}) is the decay amplitude (CP conjugate decay amplitude). Under the assumption that $|q/p| = 1$, $|\lambda|$ measures direct CP violation. The CP violation parameters are assumed to be helicity independent. The association of ϕ_s and $|\lambda|$ with S-wave and double S-wave terms implies that these consist solely of contributions
with the same flavour content as the ϕ meson, i.e. an $s\bar{s}$ resonance.

In Table 1, δ_S and δ_{SS} are the strong phases of the $P \to VS$ and $P \to SS$ processes, respectively. The P-wave strong phases are defined to be $\delta_1 \equiv \delta_{\perp} - \delta_{\parallel}$ and $\delta_2 \equiv \delta_{\perp} - \delta_0$, with the notation $\delta_{2,1} \equiv \delta_2 - \delta_1$.

4.2 Triple-product asymmetries

Scalar triple products of three momentum or spin vectors are odd under time reversal, T. Non-zero asymmetries for these observables can either be due to a CP-violating phase or a CP-conserving phase and final-state interactions. Four-body final states give rise to three independent momentum vectors in the rest frame of the decaying B_s^0 meson. For a detailed review of the phenomenology the reader is referred to Ref. [9].

The two independent terms in the time dependent decay rate that contribute to a T-odd asymmetry are the $K_4(t)$ and $K_6(t)$ terms, defined in Eq. 3. The triple products that allow access to these terms are

$$\sin \Phi = (\hat{n}_{V_1} \times \hat{n}_{V_2}) \cdot \hat{p}_{V_1},$$

$$\sin 2\Phi = 2(\hat{n}_{V_1} \cdot \hat{n}_{V_2})(\hat{n}_{V_1} \times \hat{n}_{V_2}) \cdot \hat{p}_{V_1},$$

where \hat{n}_{V_i} ($i = 1, 2$) is a unit vector perpendicular to the V_i decay plane and \hat{p}_{V_1} is a unit vector in the direction of V_1 in the B_s^0 rest frame, defined in Fig. 2. This then provides a method of probing CP violation without the need to measure the decay time or the initial flavour of the B_s^0 meson. It should be noted that while the observation of non-zero triple-product asymmetries implies CP violation or final state interactions (in the case of B_s^0 meson decays), the measurements of triple-product asymmetries consistent with zero do not rule out the presence of CP-violating effects, as strong phase differences can cause suppression [9].

In the $B_s^0 \to \phi\phi$ decay, two triple products are defined as $U \equiv \sin \Phi \cos \Phi$ and $V \equiv \sin(\pm \Phi)$ where the positive sign is taken if $\cos \theta_1 \cos \theta_0 \geq 0$ and negative sign otherwise.

The T-odd asymmetry corresponding to the U observable, A_U, is defined as the normalised difference between the number of decays with positive and negative values of $\sin \Phi \cos \Phi$,

$$A_U \equiv \frac{\Gamma(U > 0) - \Gamma(U < 0)}{\Gamma(U > 0) + \Gamma(U < 0)} \propto \int_0^\infty \Im \left(A_{\perp}(t)A_{\parallel}^*(t) + \bar{A}_{\perp}(t)\bar{A}_{\parallel}^*(t) \right) dt.$$

(9)

Similarly A_V is defined as

$$A_V \equiv \frac{\Gamma(V > 0) - \Gamma(V < 0)}{\Gamma(V > 0) + \Gamma(V < 0)} \propto \int_0^\infty \Im \left(A_{\perp}(t)A_0^*(t) + \bar{A}_{\perp}(t)\bar{A}_0^*(t) \right) dt.$$

(10)

Extraction of the triple-product asymmetries is then reduced to a simple counting exercise.
5 Decay time resolution

The sensitivity to ϕ_s is affected by the accuracy of the measured decay time. In order to resolve the fast $B^0_s-\bar{B}^0_s$ oscillation period of approximately 355 fs, it is necessary to have a decay time resolution that is much smaller than this. To account for decay time resolution, all decay time dependent terms are convolved with a Gaussian function, with width σ^t_i that is estimated for each event, i, based upon the uncertainty obtained from the vertex and kinematic fit. In order to apply an event-dependent resolution model during fitting, the estimated per-event decay time uncertainty must be calibrated. This is done using simulated events that are divided into bins of σ^t_i. For each bin, a Gaussian function is fitted to the difference between reconstructed decay time and the true decay time to determine the resolution σ^t_{true}. A first-order polynomial is then fitted to the distribution of σ^t_i versus σ^t_{true}, with parameters denoted by q_0 and q_1. The calibrated per-event decay time uncertainty used in the decay time dependent fit is then calculated as $\sigma^t_{\text{cal}} = q_0 + q_1 \sigma^t_i$. Gaussian constraints are used to account for the uncertainties on the calibration parameters in the decay time dependent fit. Cross-checks, consisting of the variation of an effective single Gaussian resolution far beyond the observed differences in data and simulated events yield negligible modifications to results, hence no systematic uncertainty is assigned. The results are verified to be largely insensitive to the details of the resolution model, as supported by tests on data and observed in similar measurements [6].

The effective single Gaussian resolution is found from simulated datasets to be 41.4 ± 0.5 fs and 43.9 ± 0.5 fs for the 2011 and 2012 datasets, respectively. Differences in the resolutions from 2011 and 2012 datasets are expected due to the independent selection requirements.

6 Acceptances

The four observables used to analyse $B^0_s \rightarrow \phi\phi$ events consist of the decay time and the three helicity angles, which require a good understanding of efficiencies in these variables. It is assumed that the decay time and angular acceptances factorise.

6.1 Angular acceptance

The geometry of the LHCb detector and the momentum requirements imposed on the final-state particles introduce efficiencies that vary as functions of the helicity angles. Simulated events with the same selection criteria as those applied to $B^0_s \rightarrow \phi\phi$ data events are used to determine this efficiency correction. Efficiencies as a function of the three helicity angles are shown in Fig. 3.

Acceptance functions are included in the decay time dependent fit through the 15 integrals $\int \epsilon(\Omega) f_k(\Omega) d\Omega$, where f_k are the angular functions given in Table 1 and $\epsilon(\Omega)$ is the efficiency as a function of the set of helicity angles, Ω. The inclusion of the integrals in the normalisation of the probability density function (PDF) is sufficient to describe the
Figure 3: Angular acceptance found from simulated $B^0_s \rightarrow \phi\phi$ events (top-left) integrated over $\cos \theta_2$ and Φ as a function of $\cos \theta_1$, (top-right) integrated over $\cos \theta_1$ and Φ as a function of $\cos \theta_2$, and (bottom) integrated over $\cos \theta_1$ and $\cos \theta_2$ as a function of Φ.

angular acceptance as the acceptance factors for each event appear as a constant in the log-likelihood, the construction of which is described in detail in Sec. 8.1, and therefore do not affect the fitted parameters. The method for the calculation of the integrals is described in detail in Ref. [36]. The integrals are calculated correcting for the differences between data and simulated events. This includes differences in the BDT training variables that can affect acceptance corrections through correlations with the helicity angles. The fit to determine the triple-product asymmetries assumes that the U and V observables are symmetric in the acceptance corrections. Simulated events are then used to assign a systematic uncertainty related to this assumption.

6.2 Decay time acceptance

The impact parameter requirements on the final-state particles efficiently suppress the background from numerous pions and kaons originating from the PV, but introduce a decay time dependence in the selection efficiency.

The efficiency as a function of the decay time is taken from $B^0_s \rightarrow D^- (\rightarrow K^+ K^- \pi^-) \pi^+$ data events, with an upper limit of 1 ps applied to the D_s^- decay time to ensure topological similarity to the $B^0_s \rightarrow \phi\phi$ decay. After the same decay time-biasing selections are applied to the $B^0_s \rightarrow D^- \pi^+$ decay as used in the $B^0_s \rightarrow \phi\phi$ decay, $B^0_s \rightarrow D^- \pi^+$ events are re-weighted according to the minimum track transverse momentum to ensure the closest
agreement between the time acceptances of $B_s^0 \to \phi \phi$ and $B_s^0 \to D_s^- \pi^+$ simulated events. The denominator used to calculate the decay time acceptance in $B_s^0 \to D_s^- \pi^+$ data is taken from a simulated dataset, generated with the B_s^0 lifetime taken from the value measured by the LHCb experiment [37].

For the case of the decay time dependent fit, the efficiency as a function of the decay time is modelled as a histogram, with systematic uncertainties arising from the differences in $B_s^0 \to \phi \phi$ and $B_s^0 \to D_s^- \pi^+$ simulated events. Figure 4 shows the comparison of the efficiency as a function of decay time calculated using $B_s^0 \to D_s^- \pi^+$ data in 2011 and 2012. Also shown is the comparison between $B_s^0 \to \phi \phi$ and $B_s^0 \to D_s^- \pi^+$ simulated events.

In the fit to determine the triple-product asymmetries, the decay time acceptance is treated only as a systematic uncertainty, which is based on the acceptance found from $B_s^0 \to D_s^- \pi^+$ data events.

7 Flavour tagging

To maximise the sensitivity on ϕ_s, the determination of the initial flavour of the B_s^0 meson is necessary. This results from the terms in the differential decay rate with the largest sensitivity to ϕ_s requiring the identification (tagging) of the flavour at production. At LHCb, tagging is achieved through the use of different algorithms described in Refs. [6][38]. This analysis uses both the opposite side (OS) and same side kaon (SSK) flavour taggers.

The OS flavour tagging algorithm [39] makes use of the $b(\bar{b})$-quark produced in association with the signal $b(\bar{b})$-quark. In this analysis, the predicted probability of an incorrect flavour assignment, ω, is determined for each event by a neural network that is calibrated using $B^+ \to J/\psi K^+$, $B^+ \to D^0 \pi^+$, $B^0 \to J/\psi K^{*0}$, $B^0 \to D^{*-} \mu^+ \nu_\mu$, and $B_s^0 \to D_s^- \pi^+$.
Table 2: Tagging efficiency (ϵ_{tag}), effective dilution (D), and tagging power (ϵD^2), as estimated from the data for events tagged containing information from OS algorithms only, SSK algorithms only, and information from both algorithms. Quoted uncertainties include both statistical and systematic contributions.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ϵ_{tag} (%)</th>
<th>D (%)</th>
<th>ϵD^2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 OS</td>
<td>12.3 ± 1.0</td>
<td>31.6 ± 0.2</td>
<td>1.23 ± 0.10</td>
</tr>
<tr>
<td>2012 OS</td>
<td>14.5 ± 0.7</td>
<td>32.7 ± 0.3</td>
<td>1.55 ± 0.08</td>
</tr>
<tr>
<td>2011 SSK</td>
<td>40.2 ± 1.4</td>
<td>15.2 ± 2.0</td>
<td>0.93 ± 0.25</td>
</tr>
<tr>
<td>2012 SSK</td>
<td>33.1 ± 0.9</td>
<td>16.0 ± 1.6</td>
<td>0.85 ± 0.17</td>
</tr>
<tr>
<td>2011 Both</td>
<td>26.0 ± 1.3</td>
<td>34.9 ± 1.1</td>
<td>3.17 ± 0.26</td>
</tr>
<tr>
<td>2012 Both</td>
<td>27.5 ± 0.9</td>
<td>33.2 ± 1.2</td>
<td>3.04 ± 0.24</td>
</tr>
</tbody>
</table>

data as control modes. Details of the calibration procedure can be found in Ref. [6].

When a signal B_s^0 meson is formed, there is an associated \bar{s} quark formed in the first branches of the fragmentation that about 50% of the time forms a charged kaon, which is likely to originate close to the B_s^0 meson production point. The kaon charge therefore allows for the identification of the flavour of the signal B_s^0 meson. This principle is exploited by the SSK flavour tagging algorithm [38]. The SSK tagger is calibrated with the $B_s^0 \to D_s^+\pi^-$ decay mode. A neural network is used to select fragmentation particles, improving the flavour tagging power quoted in the previous decay time dependent measurement [19,40].

Flavour tagging power is defined as $\epsilon_{\text{tag}} D^2$, where ϵ_{tag} is the flavour tagging efficiency and $D \equiv (1 - 2\omega)$ is the dilution. Table 2 shows the tagging power for the events tagged by only one of the algorithms and those tagged by both, estimated from 2011 and 2012 $B_s^0 \to \phi\phi$ data events separately. Uncertainties due to the calibration of the flavour tagging algorithms are applied as Gaussian constraints in the decay time dependent fit. The dependence of the flavour tagging initial flavour of the B_s^0 meson is accounted for during fitting.

8 Decay time dependent measurement

8.1 Likelihood

The parameters of interest are the CP violation parameters (ϕ_s and $|\lambda|$), the polarisation amplitudes ($|A_0|^2$, $|A_\perp|^2$, $|A_S|^2$, and $|A_{SS}|^2$), and the strong phases (δ_1, δ_2, δ_S, and δ_{SS}), as defined in Sec. 4.1. The P-wave amplitudes are defined such that $|A_0|^2 + |A_\perp|^2 + |A_S|^2 = 1$, hence only two are free parameters.

Parameter estimation is achieved from a minimisation of the negative log likelihood. The likelihood, L, is weighted using the sPlot method [11,42], with the signal weight of an
event e calculated from the equation

$$W_e(m_{K+K-K+K}) = \frac{\sum_j V_{ij} F_j(m_{K+K-K+K})}{\sum_j N_{ij} F_j(m_{K+K-K+K})}, \quad (11)$$

where j sums over the number of fit components to the four-kaon invariant mass, with PDFs F, associated yields N, and V_{ij} is the covariance between the signal yield and the yield associated with the j^{th} fit component. The log-likelihood then takes the form

$$-\ln \mathcal{L} = -\alpha \sum_{\text{events } e} W_e \ln(S_{\text{TD}}^e), \quad (12)$$

where $\alpha = \sum_e W_e / \sum_e W_e^2$ is used to account for the weights in the determination of the statistical uncertainties, and S_{TD}^e is the signal model of Eq. 2, accounting also for the effects of decay time and angular acceptance, in addition to the probability of an incorrect flavour tag. Explicitly, this can be written as

$$S_{\text{TD}}^e = \frac{\sum_i s_i^e(t_e) f_i(\Omega_e) e(t_e)}{\sum_k \zeta_k \int s_k(t) f_k(\Omega) e(t) dt d\Omega}, \quad (13)$$

where ζ_k are the normalisation integrals used to describe the angular acceptance described in Sec. 6.1 and

$$s_i^e(t) = N_i e^{-t \tau_e} \left[c_i q_e (1 - 2\omega_e) \cos(\Delta m_s t_e) + d_i q_e (1 - 2\omega_e) \sin(\Delta m_s t_e) + a_i \cosh\left(\frac{1}{2} \Delta \Gamma_s t_e\right) + b_i \sinh\left(\frac{1}{2} \Delta \Gamma_s t_e\right) \right] \otimes R(\sigma^{\text{cal}}_e, t_e), \quad (14)$$

where ω_e is the calibrated probability of an incorrect flavour assignment, and R denotes the Gaussian resolution function. In Eq. 14, $q_e = 1 (-1)$ for a $B^0_s (\bar{B}^0_s)$ meson at $t = 0$ in event e or $q_e = 0$ if no flavour tagging information exists. The 2011 and 2012 data samples are assigned independent signal weights, decay time and angular acceptances, in addition to separate Gaussian constraints to the decay time resolution parameters as defined in Sec. 5. The value of the $B^0_s (\bar{B}^0_s)$ oscillation frequency is constrained to the LHCb measured value of $\Delta m_s = 17.768 \pm 0.023 \, \text{(stat)} \pm 0.006 \, \text{(syst)} \, \text{ps}^{-1}$ [3]. The values of the decay width and decay width difference are constrained to the LHCb measured values of $\Gamma_s = 0.661 \pm 0.004 \, \text{(stat)} \pm 0.006 \, \text{(syst)} \, \text{ps}^{-1}$ and $\Delta \Gamma_s = 0.106 \pm 0.011 \, \text{(stat)} \pm 0.007 \, \text{(syst)} \, \text{ps}^{-1}$, respectively [6]. The Gaussian constraints applied to the Γ_s and $\Delta \Gamma_s$ parameters use the combination of the measured values from $B^0_s \to J/\psi K^+ K^-$ and $B^0_s \to J/\psi \pi^+ \pi^-$ decays. Constraints are therefore applied taking into account a correlation of 0.1 for the statistical uncertainties [6]. The systematic uncertainties are taken to be uncorrelated between the $B^0_s \to J/\psi K^+ K^-$ and $B^0_s \to J/\psi \pi^+ \pi^-$ decay modes.

The events selected in this analysis are within the two-kaon invariant mass range $994.5 < m_{K+K} < 1044.5 \, \text{MeV}/c^2$, and are divided into three regions. These correspond to both ϕ candidates with invariant masses smaller than the known ϕ mass, one ϕ candidate
Table 3: Results of the decay time dependent fit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Best fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_s (rad)</td>
<td>-0.17 ± 0.15</td>
</tr>
<tr>
<td>$</td>
<td>\lambda</td>
</tr>
<tr>
<td>$</td>
<td>A_\perp</td>
</tr>
<tr>
<td>$</td>
<td>A_0</td>
</tr>
<tr>
<td>δ_1 (rad)</td>
<td>0.13 ± 0.23</td>
</tr>
<tr>
<td>δ_2 (rad)</td>
<td>2.67 ± 0.23</td>
</tr>
<tr>
<td>Γ_s (ps$^{-1}$)</td>
<td>0.662 ± 0.006</td>
</tr>
<tr>
<td>$\Delta \Gamma_s$ (ps$^{-1}$)</td>
<td>0.102 ± 0.012</td>
</tr>
<tr>
<td>Δm_s (ps$^{-1}$)</td>
<td>17.774 ± 0.024</td>
</tr>
</tbody>
</table>

with an invariant mass smaller than the known ϕ mass and one larger, and a third region in which both ϕ candidates have invariant masses larger than the known ϕ mass. Binning the data in this way allows the analysis to become insensitive to correction factors that must be applied to each of the S-wave and double S-wave interference terms in the differential cross section. These factors modulate the contributions of the interference terms in the angular PDF due to the different line-shapes of kaon pairs originating from spin-1 and spin-0 configurations. Their parameterisations are denoted by $g(m_K^+K^-)$ and $h(m_K^+K^-)$, respectively. The spin-1 configuration is described by a Breit-Wigner function and the spin-0 configuration is assumed to be approximately uniform. The correction factors, denoted by C_{SP}, are defined from the relation[6]

$$C_{SP}e^{i\theta_{SP}} = \int_{m_l}^{m_h} g^*(m_K^+K^-)h(m_K^+K^-)dm_K^+K^-,$$

where m_h and m_l are the upper and lower edges of a given $m_K^+K^-$ bin, respectively. Alternative assumptions on the P-wave and S-wave lineshapes are found to have a negligible effect on the parameter estimation.

A simultaneous fit is then performed in the three $m_K^+K^-$ invariant mass regions, with all parameters shared except for the fractions and strong phases associated with the S-wave and double S-wave, which are allowed to vary independently in each region. The correction factors are calculated as described in Ref. [6]. The correction factor used for each region is calculated to be 0.69.

8.2 Results

The results of the fit to the parameters of interest are given in Table 3. The S-wave and double S-wave parameter estimations for the three regions defined in Sec. 8.1 are given in Table 4. The fraction of S-wave is found to be consistent with zero in all three mass regions.
Table 4: S-wave and double S-wave results of the decay time dependent fit for the three regions identified in Sec. 8.1, where M_{--} indicates the region with both two-kaon invariant masses smaller than the known ϕ mass, M_{-+} the region with one smaller and one larger, and M_{++} indicates the region with both two-kaon invariant masses larger than the known ϕ mass.

| Region | $|A_S|^2$ | δ_S(rad) | $|A_{SS}|^2$ | δ_{SS}(rad) |
|----------|----------------|------------------|--------------|-------------------|
| M_{--} | 0.006 ± 0.012 | -0.40 ± 0.53| 0.009 ± 0.016| -2.99 ± 1.27 |
| M_{-+} | 0.006 ± 0.010 | 2.76 ± 0.39 | 0.004 ± 0.011| -2.17 ± 0.72 |
| M_{++} | 0.001 ± 0.003 | -2.58 ± 2.08| 0.020 ± 0.022| 0.53 ± 0.55 |

Table 5: Correlation matrix associated with the result of the decay time dependent fit. Correlations with a magnitude greater than 0.5 are shown in bold.

| | $|A_1|^2$ | $|A_0|^2$ | $|A_{SS}|^2$ | $|A_S|^2$ | δ_{SS} | δ_S | δ_1 | δ_2 | ϕ_s | λ |
|--------|----------|----------|---------------|----------|---------------|------------|------------|------------|----------|----------|
| $|A_1|^2$ | 1.00 | -0.48 | 0.01 | 0.07 | 0.00 | 0.01 | -0.04 | 0.01 | -0.13 | -0.01 |
| $|A_0|^2$ | 1.00 | -0.02 | -0.14 | -0.03 | 0.01 | 0.05 | 0.02 | 0.07 | 0.03 | |
| $|A_{SS}|^2$ | 1.00 | 0.21 | 0.01 | 0.04 | 0.07 | 0.03 | -0.03 | -0.21 | | |
| $|A_S|^2$ | 1.00 | 0.59 | 0.01 | 0.04 | 0.07 | 0.03 | -0.03 | -0.18 | | |
| δ_{SS} | 1.00 | -0.02 | 0.03 | 0.06 | -0.03 | 0.25 | | | | |
| δ_S | 1.00 | 0.42 | -0.07 | -0.16 | | | | | | |
| δ_1 | 1.00 | 0.95 | -0.20 | -0.27 | | | | | | |
| δ_2 | 1.00 | -0.20 | -0.28 | | | | | | | |
| ϕ_s | 1.00 | 0.12 | | | | | | | | |
| λ | | | | | | | | | | 1.00 |

The correlation matrix is shown in Table 5. The largest correlations are found to be between the amplitudes themselves and the CP-conserving strong phases themselves. The observed correlations have been verified with simulated datasets. Cross-checks are performed on simulated datasets generated with the same number of events as observed in data, and with the same physics parameters, to ensure that generation values are recovered with negligible biases.

Figure 5 shows the distributions of the B^0_s decay time and the three helicity angles. Superimposed are the projections of the fit result. The projections are event weighted to yield the signal distribution and include acceptance effects.

The scan of the natural logarithm of the likelihood for the ϕ_s parameter is shown in Fig. 6. At each point in the scan, all other parameters are re-minimised. A parabolic minimum is observed, and a point estimate provided. The shape of the profile log-likelihood is replicated in simplified simulations as a cross-check.

8.3 Systematic uncertainties

The most significant systematic effects arise from the angular and decay time acceptances. Minor contributions are also found from the mass model used to construct the event weights, the uncertainty on the peaking background contributions, and the fit bias.
Figure 5: One-dimensional projections of the $B^0_s \to \phi\phi$ fit for (top-left) decay time with binned acceptance, (top-right) helicity angle Φ and (bottom-left and bottom-right) cosine of the helicity angles θ_1 and θ_2. The background-subtracted data are marked as black points, while the black solid lines represent the projections of the best fit. The CP-even P-wave, the CP-odd P-wave and S-wave combined with double S-wave components are shown by the red long dashed, green short dashed and blue dotted lines, respectively.

An uncertainty due to the angular acceptance arises from the limited number of simulated events used to determine the acceptance correction. This is accounted for by varying the normalisation weights within their statistical uncertainties accounting for correlations. The varied weights are then used to fit simulated datasets. This process is repeated and the width of the Gaussian distribution is used as the uncertainty. A further uncertainty arises from the assumption that the angular acceptance does not depend on the algorithm used for the initial flavour assignment. Such a dependence can be expected due to the kinematic correlations of the tagging particles with the signal particles. This introduces a tagging efficiency based on the kinematics of the signal particles. The difference between the nominal data result and the result with angular acceptances calculated independently for the different flavour tagging algorithms leads to a non-negligible uncertainty on the polarisation amplitudes. Further checks are performed to verify that the angular acceptance does not depend on the way in which the event was triggered.
The systematic uncertainty on the decay time acceptance is evaluated from the difference in the decay time acceptance evaluated from $B^0_s \rightarrow \phi \phi$ and $B^0_s \rightarrow D^- \pi^+$ simulated events. The simulated datasets are generated with the decay time acceptance of $B^0_s \rightarrow \phi \phi$ simulation and then fitted with the $B^0_s \rightarrow D^- \pi^+$ decay time acceptance. This process is repeated and the resulting bias on the fitted parameters is used as an estimate of the systematic uncertainty.

The uncertainty on the mass model is found by refitting the data with signal weights derived from a single Gaussian $B^0_s \rightarrow \phi \phi$ model, rather than the nominal double Gaussian. The uncertainty due to peaking background contributions is found through the recalculation of the signal weights with peaking background contributions varied according to the statistical uncertainties on the yields of the $A^0_b \rightarrow \phi p K^-$ and $B^0 \rightarrow \phi K^{*0}$ contributions. Fit bias arises in likelihood fits when the number of events used to determine the free parameters is not sufficient to achieve the Gaussian limit. This uncertainty is evaluated by generating and fitting simulated datasets and taking the resulting bias as the uncertainty.

Uncertainties due to flavour tagging are included in the statistical uncertainty through Gaussian constraints on the calibration parameters, and amount to 10% of the statistical uncertainty on the CP-violating phase.

A summary of the systematic uncertainties is given in Table 6.

9 Triple-product asymmetries

9.1 Likelihood

In order to determine the triple-product asymmetries, a separate likelihood fit is performed. This is based around the simultaneous fitting of separate datasets to the four-kaon invariant mass, which are split according to the sign of U and V observables. Simultaneous mass
Table 6: Summary of systematic uncertainties for physics parameters in the decay time dependent measurement, where AA denotes angular acceptance.

| Parameter | $|A_0|^2$ | $|A_+|^2$ | δ_1 (rad) | δ_2 (rad) | ϕ_s (rad) | $|\lambda|$ |
|------------------------|---------|---------|------------------|------------------|----------------|----------|
| Mass model | – | – | 0.03 | 0.04 | – | 0.02 |
| AA (statistical) | 0.003 | 0.004 | 0.02 | 0.02 | 0.02 | 0.02 |
| AA (tagging) | 0.006 | 0.002 | – | 0.01 | – | 0.01 |
| Fit bias | – | – | 0.02 | – | – | – |
| Time acceptance | 0.005 | 0.003 | 0.02 | 0.05 | 0.02 | – |
| Peaking background | – | – | 0.01 | 0.01 | – | – |
| Total | 0.009 | 0.005 | 0.05 | 0.07 | 0.03 | 0.03 |

fits are performed for the U and V observables separately. The set of free parameters in fits to determine the U and V observables consist of the asymmetries of the $B^0 \to \phi\phi$ signal and combinatoric background ($A_{U(V)}$ and $A_{B_{U(V)}}$), along with their associated total yields (N_S and N_B). The mass model is the same as that described in Sec. 3. The total PDF, S_{TP}, is then of the form

$$S_{TP} = \sum_{i=\{+,-\}} \left(f^i_S G^S(m_{K^+K^-K^+K^-}) + \sum_j f^j_P P^j(m_{K^+K^-K^+K^-}) \right),$$

(16)

where j indicates the sum over the background components with corresponding PDFs, P^j, and G^S is the double Gaussian signal PDF as described in Sec. 3. The parameters f^k_i found in Eq. 16 are related to the asymmetry, $A_{U(V)}^k$, through

$$f^k_+ = \frac{1}{2}(A_{U(V)}^k + 1),$$

(17)

$$f^k_- = \frac{1}{2}(1 - A_{U(V)}^k),$$

(18)

where k denotes a four-kaon mass fit component, as described in Sec. 3. Peaking backgrounds are assumed to be symmetric in U and V.

9.2 Results

The background-subtracted distributions of the U and V observables are shown in Fig. 7 for the mass range $5246.8 < m_{K^+K^-K^+K^-} < 5486.8$ MeV/c^2. Distributions are found to agree between 2011 and 2012 datasets and show qualitatively symmetric distributions. The triple-product asymmetries found from the simultaneous fit described in Sec. 9.1 are measured to be

$$A_U = -0.003 \pm 0.017,$$

$$A_V = -0.017 \pm 0.017.$$
Figure 7: Background-subtracted distributions of the (left) U and (right) V observables for the 2011 and 2012 datasets and restricted to the mass range $5246.8 < m_{K^+K^-K^+K^-} < 5486.8$ MeV/c^2. The 2011 distributions are scaled to have the same area as the 2012 distributions.

Statistical uncertainties are therefore to have approximately halved with respect to the previous LHCb measurements [17], due to more efficient selection requirements and a larger data sample, and are verified through fits to simulated datasets. No evidence for CP violation is found.

9.3 Systematic uncertainties

As for the case of the decay time dependent fit, the largest contributions to the systematic uncertainty arise from the decay time and angular acceptances. Minor uncertainties also result from the mass model and peaking background knowledge.

The effect of the decay time acceptance is determined through the generation of simulated samples including the decay time acceptance obtained from $B_s^0 \rightarrow D_s^- \pi^+$ data, and fitted with the method described in Sec. 9.1. The resulting bias is used to assign a systematic uncertainty.

The effect of the angular acceptance is evaluated by generating simulated datasets with and without the inclusion of the angular acceptance. The resulting bias found on the fit results of the triple-product asymmetries is then used as a systematic uncertainty.

Uncertainties related to the mass model are evaluated by taking the difference between the nominal fit results and those using a single Gaussian function to model the $B_s^0 \rightarrow \phi\phi$ decay. The effect of the peaking background is evaluated by taking the largest difference between the nominal fit results and the fit results with the peaking background yields varied according to their uncertainties, as given in Sec. 3.

The total systematic uncertainty is estimated by choosing the larger of the two individual
Table 7: Systematic uncertainties on the triple-product asymmetries A_U and A_V. The total uncertainty is the sum in quadrature of the larger of the two components for each source.

<table>
<thead>
<tr>
<th>Source</th>
<th>A_U</th>
<th>A_V</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular acceptance</td>
<td>0.001</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Time acceptance</td>
<td>0.005</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>Mass model</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Peaking background</td>
<td>–</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Total</td>
<td>0.006</td>
<td>0.005</td>
<td>0.006</td>
</tr>
</tbody>
</table>

systematic uncertainties on A_U and A_V. The contributions are combined in quadrature to determine the total systematic uncertainty.

Systematic uncertainties due to the residual effect of the decay time, geometrical acceptance and the signal and background fit models are summarised in Table 7.

10 Summary and conclusions

Measurements of CP violation in the $B^0_s \to \phi\phi$ decay are presented, based on the full LHCb Run 1 dataset of 3.0 fb$^{-1}$. The CP-violating phase, ϕ_s, and CP violation parameter, $|\lambda|$, are determined to be

$$\phi_s = -0.17 \pm 0.15 \text{ (stat)} \pm 0.03 \text{ (syst)} \text{ rad},$$
$$|\lambda| = 1.04 \pm 0.07 \text{ (stat)} \pm 0.03 \text{ (syst)}.$$

Results are found to agree with the theoretical predictions [1,3]. When compared with the CP-violating phase measured in $B^0_s \to J/\psi K^+ K^-$ and $B^0_s \to J/\psi \pi^+ \pi^-$ decays [6], these results show that no large CP violation is present either in B^0_s-\bar{B}^0_s mixing or in the $b \to s\bar{s}s$ decay amplitude.

The polarisation amplitudes and strong phases are measured to be

$$|A_0|^2 = 0.364 \pm 0.012 \text{ (stat)} \pm 0.009 \text{ (syst)},$$
$$|A_\perp|^2 = 0.305 \pm 0.013 \text{ (stat)} \pm 0.005 \text{ (syst)},$$
$$\delta_1 = 0.13 \pm 0.23 \text{ (stat)} \pm 0.05 \text{ (syst)} \text{ rad},$$
$$\delta_2 = 2.67 \pm 0.23 \text{ (stat)} \pm 0.07 \text{ (syst)} \text{ rad}.$$

Values of the polarisation amplitudes are found to agree well with the previous measurements [17,19]. Measurements in other $B \to VV$ penguin transitions at the B factories generally give higher values of $f_L \equiv |A_0|^2$ [11,16]. The value of f_L found in the $B^0_s \to \phi\phi$ channel is almost equal to that in the $B^0_s \to K^{*0}\bar{K}^{*0}$ decay [44]. As reported in Ref. [17], the results are in agreement with QCD factorisation predictions [2,3], but disfavour the perturbative QCD estimate given in Ref. [45]. The fractions of S-wave and double S-wave are found to be consistent with zero in all three regions of $m_{K^+K^-}$ mass.
The triple-product asymmetries are determined from a separate decay time integrated fit to be

\[A_U = -0.003 \pm 0.017 \text{ (stat)} \pm 0.006 \text{ (syst)}, \]

\[A_V = -0.017 \pm 0.017 \text{ (stat)} \pm 0.006 \text{ (syst)}, \]

in agreement with previous measurements \cite{17,18}.

The results of the polarisation amplitudes, strong phases, and triple-product asymmetries presented in this paper supersede the previous LHCb measurements \cite{17,19}. The measured values of the \(CP \)-violating phase and triple-product asymmetries are consistent with the hypothesis of \(CP \) conservation.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom).

References

LHCb collaboration

23 Sezione INFN di Pisa, Pisa, Italy
24 Sezione INFN di Roma Tor Vergata, Roma, Italy
25 Sezione INFN di Roma La Sapienza, Roma, Italy
26 Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
27 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
28 National Center for Nuclear Research (NCBJ), Warsaw, Poland
29 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
33 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35 Institute for High Energy Physics (IHEP), Protvino, Russia
36 Universität de Barcelona, Barcelona, Spain
37 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38 European Organization for Nuclear Research (CERN), Geneva, Switzerland
39 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40 Physik-Institut, Universität Zürich, Zürich, Switzerland
41 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
43 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
44 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
45 University of Birmingham, Birmingham, United Kingdom
46 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
47 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
48 Department of Physics, University of Warwick, Coventry, United Kingdom
49 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
50 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
52 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
53 Imperial College London, London, United Kingdom
54 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
55 Department of Physics, University of Oxford, Oxford, United Kingdom
56 Massachusetts Institute of Technology, Cambridge, MA, United States
57 University of Cincinnati, Cincinnati, OH, United States
58 University of Maryland, College Park, MD, United States
59 Syracuse University, Syracuse, NY, United States
60 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
61 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to
62 Institut für Physik, Universität Rostock, Rostock, Germany, associated to
63 National Research Centre Kurchatov Institute, Moscow, Russia, associated to
64 Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to
65 KVI - University of Groningen, Groningen, The Netherlands, associated to
66 Celal Bayar University, Manisa, Turkey, associated to

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
b P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
c Università di Bari, Bari, Italy
d Università di Bologna, Bologna, Italy
e Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Firenze, Firenze, Italy
Università di Urbino, Urbino, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
Università della Basilicata, Potenza, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Viet Nam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore, Pisa, Italy
Università degli Studi di Milano, Milano, Italy