Header

UZH-Logo

Maintenance Infos

Neuromorphic electronic circuits for building autonomous cognitive systems


Chicca, E; Stefanini, F; Bartolozzi, C; Indiveri, G (2014). Neuromorphic electronic circuits for building autonomous cognitive systems. Institute of Electrical and Electronics Engineers. Proceedings, 102(9):1367 - 1388.

Abstract

Several analog and digital brain-inspired electronic systems have been recently proposed as dedicated solutions for fast simulations of spiking neural networks. While these architectures are useful for exploring the computational properties of large-scale models of the nervous system, the challenge of building low-power compact physical artifacts that can behave intelligently in the real world and exhibit cognitive abilities still remains open. In this paper, we propose a set of neuromorphic engineering solutions to address this challenge. In particular, we review neuromorphic circuits for emulating neural and synaptic dynamics in real time and discuss the role of biophysically realistic temporal dynamics in hardware neural processing architectures; we review the challenges of realizing spike-based plasticity mechanisms in real physical systems and present examples of analog electronic circuits that implement them;we describe the computational properties of recurrent neural networks and show how neuromorphic winner-take-all circuits can implement working-memory and decision-making mechanisms. We validate the neuromorphic approach proposed with experimental results obtained from our own circuits and systems, and argue how the circuits and networks presented in this work represent a useful set of components for efficiently and elegantly implementing neuromorphic cognition.

Abstract

Several analog and digital brain-inspired electronic systems have been recently proposed as dedicated solutions for fast simulations of spiking neural networks. While these architectures are useful for exploring the computational properties of large-scale models of the nervous system, the challenge of building low-power compact physical artifacts that can behave intelligently in the real world and exhibit cognitive abilities still remains open. In this paper, we propose a set of neuromorphic engineering solutions to address this challenge. In particular, we review neuromorphic circuits for emulating neural and synaptic dynamics in real time and discuss the role of biophysically realistic temporal dynamics in hardware neural processing architectures; we review the challenges of realizing spike-based plasticity mechanisms in real physical systems and present examples of analog electronic circuits that implement them;we describe the computational properties of recurrent neural networks and show how neuromorphic winner-take-all circuits can implement working-memory and decision-making mechanisms. We validate the neuromorphic approach proposed with experimental results obtained from our own circuits and systems, and argue how the circuits and networks presented in this work represent a useful set of components for efficiently and elegantly implementing neuromorphic cognition.

Statistics

Citations

66 citations in Web of Science®
73 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2014
Deposited On:25 Feb 2015 08:30
Last Modified:05 Apr 2016 19:00
Publisher:Institute of Electrical and Electronics Engineers
Number of Pages:22
ISSN:0018-9219
Publisher DOI:https://doi.org/10.1109/JPROC.2014.2313954

Download

Full text not available from this repository.
View at publisher