Header

UZH-Logo

Maintenance Infos

Concept learning in neuromorphic vision systems: What can we learn from insects?


Sandin, Fredrik; Khan, Asad I; Dyer, Adrian G; Amin, Anang Hudaya M; Indiveri, Giacomo; Chicca, Elisabetta; Osipov, Evgeny (2014). Concept learning in neuromorphic vision systems: What can we learn from insects? Journal of Software Engineering and Applications, 7:387-395.

Abstract

Vision systems that enable collision avoidance, localization and navigation in complex and uncertain environments are common in biology, but are extremely challenging to mimic in artificial electronic systems, in particular when size and power limitations apply. The development of neuromorphic electronic systems implementing models of biological sensory-motor systems in silicon is one promising approach to addressing these challenges. Concept learning is a central part of animal cognition that enables appropriate motor response in novel situations by generalization of former experience, possibly from a few examples. These aspects make concept learning a challenging and important problem. Learning methods in computer vision are typically inspired by mammals, but recent studies of insects motivate an interesting complementary research direction. There are several remarkable results showing that honeybees can learn to master abstract concepts, providing a road map for future work to allow direct comparisons between bio-inspired computing architectures and information processing in miniaturized “real” brains. Considering that the brain of a bee has less than 0.01% as many neurons as a human brain, the task to infer a minimal architecture and mechanism of concept learning from studies of bees appears well motivated. The relatively low complexity of insect sensory-motor systems makes them an interesting model for the further development of bio-inspired computing architectures, in particular for resource- constrained applications such as miniature robots, wireless sensors and handheld or wearable devices. Work in that direction is a natural step towards understanding and making use of prototype circuits for concept learning, which eventually may also help us to understand the more complex learning circuits of the human brain. By adapting concept learning mechanisms to a polymorphic computing framework we could possibly create large-scale decentralized computer vision systems, for example in the form of wireless sensor networks.

Abstract

Vision systems that enable collision avoidance, localization and navigation in complex and uncertain environments are common in biology, but are extremely challenging to mimic in artificial electronic systems, in particular when size and power limitations apply. The development of neuromorphic electronic systems implementing models of biological sensory-motor systems in silicon is one promising approach to addressing these challenges. Concept learning is a central part of animal cognition that enables appropriate motor response in novel situations by generalization of former experience, possibly from a few examples. These aspects make concept learning a challenging and important problem. Learning methods in computer vision are typically inspired by mammals, but recent studies of insects motivate an interesting complementary research direction. There are several remarkable results showing that honeybees can learn to master abstract concepts, providing a road map for future work to allow direct comparisons between bio-inspired computing architectures and information processing in miniaturized “real” brains. Considering that the brain of a bee has less than 0.01% as many neurons as a human brain, the task to infer a minimal architecture and mechanism of concept learning from studies of bees appears well motivated. The relatively low complexity of insect sensory-motor systems makes them an interesting model for the further development of bio-inspired computing architectures, in particular for resource- constrained applications such as miniature robots, wireless sensors and handheld or wearable devices. Work in that direction is a natural step towards understanding and making use of prototype circuits for concept learning, which eventually may also help us to understand the more complex learning circuits of the human brain. By adapting concept learning mechanisms to a polymorphic computing framework we could possibly create large-scale decentralized computer vision systems, for example in the form of wireless sensor networks.

Statistics

Altmetrics

Downloads

10 downloads since deposited on 25 Feb 2015
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2014
Deposited On:25 Feb 2015 10:22
Last Modified:05 Apr 2016 19:01
Publisher:Scientific Research Publishing
Series Name:Journal of Software Engineering and Applications
ISSN:1945-3116
Publisher DOI:https://doi.org/10.4236/jsea.2014.75035

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 303kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations