Header

UZH-Logo

Maintenance Infos

Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior


Zhan, Y; Paolicelli, R C; Sforazzini, F; Weinhard, L; Bolasco, G; Pagani, F; Vyssotski, A L; Bifone, A; Gozzi, A; Ragozzino, D; Gross, C T (2014). Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17(3):400-406.

Abstract

Microglia are phagocytic cells that infiltrate the brain during development and have a role in the elimination of synapses during brain maturation. Changes in microglial morphology and gene expression have been associated with neurodevelopmental disorders. However, it remains unknown whether these changes are a primary cause or a secondary consequence of neuronal deficits. Here we tested whether a primary deficit in microglia was sufficient to induce some autism-related behavioral and functional connectivity deficits. Mice lacking the chemokine receptor Cx3cr1 exhibit a transient reduction of microglia during the early postnatal period and a consequent deficit in synaptic pruning. We show that deficient synaptic pruning is associated with weak synaptic transmission, decreased functional brain connectivity, deficits in social interaction and increased repetitive-behavior phenotypes that have been previously associated with autism and other neurodevelopmental and neuropsychiatric disorders. These findings open the possibility that disruptions in microglia-mediated synaptic pruning could contribute to neurodevelopmental and neuropsychiatric disorders.

Abstract

Microglia are phagocytic cells that infiltrate the brain during development and have a role in the elimination of synapses during brain maturation. Changes in microglial morphology and gene expression have been associated with neurodevelopmental disorders. However, it remains unknown whether these changes are a primary cause or a secondary consequence of neuronal deficits. Here we tested whether a primary deficit in microglia was sufficient to induce some autism-related behavioral and functional connectivity deficits. Mice lacking the chemokine receptor Cx3cr1 exhibit a transient reduction of microglia during the early postnatal period and a consequent deficit in synaptic pruning. We show that deficient synaptic pruning is associated with weak synaptic transmission, decreased functional brain connectivity, deficits in social interaction and increased repetitive-behavior phenotypes that have been previously associated with autism and other neurodevelopmental and neuropsychiatric disorders. These findings open the possibility that disruptions in microglia-mediated synaptic pruning could contribute to neurodevelopmental and neuropsychiatric disorders.

Statistics

Citations

230 citations in Web of Science®
235 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2014
Deposited On:25 Feb 2015 10:11
Last Modified:08 Dec 2017 11:39
Publisher:Nature Publishing Group
ISSN:1097-6256
Publisher DOI:https://doi.org/10.1038/nn.3641
PubMed ID:24487234

Download

Full text not available from this repository.
View at publisher