Involvement of Toxoplasma gondii in reproductive disorders in Swiss pig farms

Basso, W; Handke, M; Sydler, T; Borel, N; Grimm, F; Sidler, X; Deplazes, P

DOI: https://doi.org/10.1016/j.parint.2014.11.017

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-108049
Accepted Version

Originally published at:
DOI: https://doi.org/10.1016/j.parint.2014.11.017
Involvement of Toxoplasma gondii in reproductive disorders in Swiss pig farms

Walter Basso, Martin Handke, Titus Sydler, Nicole Borel, Felix Grimm, Xaver Sidler, Peter Deplazes

PII: S1383-5769(14)00173-1
DOI: doi: 10.1016/j.parint.2014.11.017
Reference: PARINT 1318

To appear in: Parasitology International

Received date: 23 October 2014
Accepted date: 23 November 2014

Please cite this article as: Basso Walter, Handke Martin, Sydler Titus, Borel Nicole, Grimm Felix, Sidler Xaver, Deplazes Peter, Involvement of Toxoplasma gondii in reproductive disorders in Swiss pig farms, Parasitology International (2014), doi: 10.1016/j.parint.2014.11.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Involvement of *Toxoplasma gondii* in reproductive disorders in Swiss pig farms

Walter Basso¹,²*, Martin Handke², Titus Sydler³, Nicole Borel³, Felix Grimm¹, Xaver Sidler²**, Peter Deplazes¹**

¹ Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland

² Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland

³ Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057, Zurich, Switzerland

* Corresponding author at: Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 266a 8057 Zurich, Switzerland.

Tel: +41 44 635 8510; fax: +41 44 635 8907.

E-mail address: walter.basso@access.uzh.ch

(W. Basso)

** Both authors contributed equally.

Abstract

To determine the role of *Toxoplasma gondii* in reproductive failure, 108 of 113 sows that had aborted or delivered stillborn or weak piglets from 58 Swiss farms were serologically tested for specific antibodies against *T. gondii* tachyzoite antigens by ELISA. Additionally, formalin-fixed and paraffin-embedded tissues from 123 foetuses or stillborn piglets derived from 25 seropositive and 27 seronegative sows were analyzed by real-time PCR for *T. gondii* DNA. Tissues from animals showing a positive reaction in real-time PCR were subsequently tested by immunohistochemistry for the presence of *T. gondii* antigens. Antibodies against *T. gondii* were detected in 24.1% (26 out of 108) of sows with reproductive failure, and 37.3% (22 of 58) of the 58 tested farms had seropositive sows. No significant differences in the prevalences were observed in relation to the housing system (exclusive indoor housing, indoor housing with outdoor yard and exclusive outdoor housing) neither at the individual nor at the farm levels. By real time-PCR, *T. gondii* DNA was detected in three placentas from one seropositive sow (abortion at 71 gestation days [gd]), and in brain tissues from one foetus (abortion at 76 gd), one stillborn (116 gd) and one mummy (112 gd) delivered by three further seropositive sows, but in no sample
derived from seronegative dams. By immunohistochemical staining, the presence of *T. gondii* could be confirmed only in placenta samples. In one of the cases, a co-infection with porcine parvovirus (PPV) was detected. These results suggest vertical transmission of *T. gondii* and/or placental infection in at least 3.5% (4 of 113) of sows with reproductive disorders. Therefore, *T. gondii* should be more frequently included in the routine differential diagnosis of reproductive failure in sows. In addition, a proper disposal of placentas and abortion material beyond the reach of cats could help to interrupt the further dissemination of this parasite at the farm level.

Keywords

Toxoplasma gondii; sow; reproduction; abortion; stillbirth; mummification

Introduction

Toxoplasma gondii infections in pigs are frequently asymptomatic; however, several cases of clinical disease characterised by dyspnoea, general weakness, anorexia, fever, cyanosis, diarrhoea, hind limb weakness and even death were described [1, 2]. Besides, *T. gondii* was associated with reproductive failure in sows, characterized by abortion, foetal mummification, stillbirth and neonatal mortality. Most natural outbreaks in pigs were assumed to be caused by ingestion of oocysts from the environment, however, rodents harbouring tissue cysts represent an important source of infection under some farming conditions [3]. Also cannibalism could be involved in the dissemination of the parasite within a farm [4]. In contrast to other species (i.e. small ruminants), less attention has been paid to transplacental infection in pigs. Reviewed data suggested that it is difficult to consistently reproduce congenital toxoplasmosis in experimentally infected sows [1, 2]. Moreover, many aspects of vertical transmission in pigs are still not clearly understood.

In this study, we evaluated the importance of *T. gondii* in undiagnosed cases of reproductive failure in sows from Switzerland.

Materials and methods

Samples
In order to determine the causes of reproductive failure in sows from Switzerland, 59 pig breeding farms distributed over 12 Swiss cantons, which experienced a high rate of abortions (expulsion of all foetuses before 110th day of gestation), mummified or autolytic foetuses delivered at term, stillbirths or weak neonates, were sampled. In each farm, one to three sows experiencing reproductive problems during the same stage of pregnancy were included in the sampling. From each sow, one to three foetuses or stillborn/weak born piglets (if possible with their placertas) and a blood sample from the *Vena cava cranialis* were collected. During the whole sampling, a total of 286 foetuses or stillborn/weak born piglets were collected from 113 sows. The collected samples derived from 42 sows that had aborted (n=115 foetuses) and 71 sows that farrowed at term, presenting mummified or autolytic foetuses or stillborn/weak born piglets (n=171). For the estimation of the gestation age, the weight and crown-rump length of the foetuses/piglets were measured, and complete necropsy and collection of tissue samples for further diagnostic studies were performed. Blood samples could be obtained from 108 of the sows included in the study, deriving from 58 farms (i.e. 13 farms with exclusive indoor housing, 41 farms with indoor housing and outdoor concrete yard and 4 farms with exclusive pasture-based management).

Histopathological, virological and bacteriological analysis

Samples from brain, liver, spleen, kidney, lungs, mesenterial lymph nodes, thymus, heart and placenta from all 286 foetuses or stillborn/weak born piglets were collected, fixed in 10% buffered formalin, embedded in paraffin, cut at 2 µm sections and examined microscopically after staining with haematoxylin and eosin (H&E). The virological and bacteriological analyses performed are presented elsewhere [5, 6]. Briefly, tissue samples were analyzed for porcine circovirus (PCV)-2 antigen by immunohistochemistry, and for porcine parvovirus (PPV) antigen by immunoelectron microscopy and indirect fluorescent antibody test. Selected foetuses (n=44) were also tested for porcine enterovirus (PEV) types 8, 9, and 10 and porcine teschovirus (PTV) infections by PCR. Placentas and foetal organs were examined for mesophilic aerobic bacteria by cultivation followed by differentiation using biochemical and molecular methods. For detection of *Brucella* sp. and *Leptospira* infections (the latter only in suspected cases), special staining methods were applied (i.e. Köster and Gimenez staining for *Brucella* sp. and Warthin–Starry staining for *Leptospira* sp.). Tissue samples were additionally investigated for *Chlamydia, Parachlamydia*, and *Waddlia* infections by PCR and immunohistochemistry [6]. The sows were examined serologically for antibodies against PCV-2, pseudorabies virus (PRV) and porcine reproductive respiratory syndrome virus (PPRSV) by ELISAs, and by microagglutination tests and Rose-Bengal- Test for antibodies against *Leptospira* serovars and *Brucella*, respectively.
Serology for *T. gondii*

Sera from 108 sows derived from 58 different farms were tested for antibodies against *T. gondii* by a commercial ELISA (PrioCHECK Toxoplasma Ab porcine, Prionics AG, Schlieren-Zurich, Switzerland) according to the manufacturer’s instructions. Serum samples were tested at a dilution of 1:50 and results were expressed as percentage of positivity (PP) relative to the reaction of the positive control (PP sample = O.D. 450 nm sample/O.D. 450 nm positive control x 100). A PP ≥ 15 was regarded as positive and PP values below 15 were considered negative as suggested by the manufacturer. In an independent study, this commercial ELISA showed a relative sensitivity and specificity of 98.9% and 92.7%, respectively [7].

Real-time PCR for *T. gondii*

To determine the occurrence of transplacental transmission of *T. gondii* in seropositive sows, DNA was extracted from formalin-fixed paraffin-embedded tissue samples of placentas and foetal organs (brain, liver, spleen, lungs, mesenterial lymph nodes, and heart) from 58 aborted foetuses or stillborn/weak piglets derived from 25 seropositive sows, using a commercial DNA extraction kit (DNeasy Blood and Tissue Kit, QIAGEN GmbH, Hilden, Germany), according to the manufacturer’s instructions. Subsequently, a real-time PCR targeting the 529-bp repeat element (RE) of *T. gondii* was performed as described previously [8]. Additionally, tissue samples from 65 foetuses derived from 27 seronegative sows from the same farms harbouring seropositive sows were also included in the analysis.

Immunohistochemical staining for *T. gondii*

All available tissue samples from animals reacting positive in the real-time PCR for *T. gondii* DNA were tested by immunohistochemistry for *T. gondii* using a primary anti *T. gondii* polyclonal rabbit antibody (Ab-1, RB-282-A, Thermo Scientific) and the EnVision®+System–HRP (AEC) Rabbit (DakoCytomation) commercial kit. As positive control, brain sections from a mouse experimentally infected with *T. gondii* were used. As negative control, the samples were tested according to the same protocol but without the incubation step with the primary antibody.

Results
By serological methods, all tested sows (n=108) were negative for PRRSV, PRV, Brucella suis and Leptospira sp. infections. Virological analysis on tissues from foetuses/stillborn/weak-born piglets or placentas allowed the detection of PCV-2 and PPV in tissues from 5 (4.4%) and 3 (2.7%) of the 113 litters, respectively. PEV and PTV were detected in four and one of the 44 tested foetuses, respectively. In 17 litters (15%), a possible bacterial etiology was determined: Escherichia coli (n = 6), Streptococcus sp. (n = 3), Actinomyces pyogenes (n = 2), Klebsiella sp. (n = 2), Enterococcus sp. (n = 1), Mycobacterium sp. other than M. tuberculosis complex (n = 1), Leptospira sp. (n = 1) and Chlamydia abortus (n=1, co-infection with PCV-2). All placentas (n=99) were negative for Brucella by special staining and microscopy. Malformations and dystocia were present in 4 (3.5%) litters [5, 6].

By ELISA, antibodies against T. gondii were detected in 26 out of 108 (24.1%; CI 95%: 16.9 - 33.0) sows with reproductive failure. According to the type of housing, positive serologic results were obtained in 5 of 20 (25%; CI 95%: 10.8 - 47.2) sows with exclusive indoor housing; in 19 of 80 (23.7%; CI 95%: 15.7 - 34.2) sows housed indoors with free access to a concrete yard outdoors; and in 2 of 8 (25%; CI 95%: 6.3 - 59.9) sows housed exclusively outdoors, on pasture. At the farm level, 22 out of 58 (37.9%; CI 95%: 26.5 - 50.8) farms experiencing reproductive disorders had sows seropositive to T. gondii. Positive sows were detected in 5 of 13 (38.5%; CI 95%: 17.6 - 64.6) farms with exclusive indoor housing; in 15 of 41 (36.6%; CI 95%: 23.5 - 51.9) farms with indoor housing and free access to outdoor yards, and in 2 of 4 (50%; CI 95%: 15.0 - 85.0) farms with exclusive pasture-based management. The differences in the frequency with respect to the housing system were not significant, neither at the individual nor at the farm levels. While 18.2% (4 of 22) of the farms in which seropositive sows were detected recognized to have a problem with rodents’ colonisation, also 19.4% (7 of 36) of the farms without seropositive sows recognized to have this problem.

By real-time PCR, T. gondii DNA was detected in 3 placentas derived from one seropositive sow (Sow No.1714) that aborted at 71 gestation days (gd), and in brain samples from one aborted foetus (76 gd), one stillborn piglet (116 gd) and one mummy (112 gd) delivered at term, derived from 3 further seropositive sows (sows No. 1187, 187 and 3308), but not in tissue samples from foetuses/piglets derived from seronegative sows. All four litters with positive real-time PCR results for T. gondii DNA originated from different farms (one indoor farm and 3 farms with indoor-outdoor housing). By immunohistochemical staining, the presence of T. gondii could be confirmed in placenta samples from sows No 1714 and 3308. No further cause of reproductive failure could be detected in the litters from sows No. 1714, 1187 and 187; however, in both examined mummies from sow nr. 3308, a co-infection with PPV was diagnosed. Data about the farms, abortion/farrowing, necropsy findings and histopathological changes observed in the analyzed foetal tissues are displayed in Table 1.
PCR and immunohistochemical results suggest that transplacental transmission of *T. gondii* and/or placental infection occurred in at least 3.5% (4 of 113) of the sows showing reproductive disorders, or in 16% (4 of 25) of the seropositive ones.

Discussion

The cause of reproductive failure could be assumed in only ~30% of the analysed cases. In about 15% of these, a bacterial agent was involved. Viruses commonly associated with reproductive disorders such as PCV-2 and PPV were detected in 7.9% (4.5% PCV-2; 2.7% PPV; 0.7% PCV-2/PPV) of the litters, and malformations and dystocia in 3.5% of the cases. PEV and PTV were detected on 5 occasions (4.4% of the litters); however their role as causing agents of reproductive failure could not be definitively demonstrated. However, even after exclusion of the most frequent agents of reproductive failure in pigs, over 60% of the cases still remained undiagnosed [5]. Thus, the involvement of other less common etiological such as *Chlamydia* and *Chlamydia*-like organisms [6] and *T. gondii* was further investigated.

In our study, antibodies against *T. gondii* were detected in 24.1% of sows with reproductive failure. It is generally accepted, that the prevalence of *T. gondii* infection in pigs can vary according to their age and management system, being generally higher in older pigs and in pigs reared outdoors than in young pigs and pigs from bio-secure indoor farms, as they have an increased chance for contact with *T. gondii* (ingestion of oocysts or infected intermediate hosts, i.e. rodents or birds) [2, 9-11]. Interestingly, in this study no significant differences in the seroprevalences according to the housing system were observed. This is in agreement with a previous study from Switzerland, in which the seroprevalences in free-range and conventional fattening pigs were similar [12]. This could be a result of the implementation of the Swiss regulations for animal welfare that include (also in indoor breeding systems!) the provision of bedding and nesting materials (i.e. cut and long straw, chinese silvergrass, sawdust), high-fibre food, permanent access to occupational materials (i.e. straw, hay, grass, whole crop silage, special devices) to guarantee the natural exploratory behaviour of pigs, and a reduction of the slatted floor [13] enhancing the possibilities of a *T. gondii* infection.

The association of *T. gondii* with reproductive problems in sows and neonatal disease has been documented by several authors. Abortion in sows due to natural *T. gondii* infection was reported in pig farms in Taiwan [14], Brazil [15] and Korea [16]. Neonatal toxoplasmosis characterised by stillbirth and/or death during the first weeks of age was previously reported in pig farms in Japan [17], Brazil [15], Argentina [18] and Thailand [19]. The signs observed in the piglets before death included abnormal gait, dyspnoea and/or diarrhea. Nevertheless, experimental attempts to reproduce congenital toxoplasmosis in pigs were not consistently successful [20-23].
The reasons for this failure are not fully understood. It has been suggested that the stage of *T. gondii*, route of inoculation, stage of gestation and host factors might account for some of the observed discrepancies [2].

According to our results, transplacental transmission of *T. gondii* and/or placental infection occurred in 16% (4 of 25) of the sows showing a positive serologic reaction to *T. gondii* after occurrence of the abortion/stillbirth event. In pigs experimentally infected with *T. gondii* oocysts, positive ELISA results were first detectable after 2 weeks post inoculation [7]. Thus, it can be assumed that the infection of the sows in the present study had occurred ≥2 weeks before analysis. In three of these cases (two abortions, one stillbirth), no other causes of reproductive disorders could be detected. In the first case (Sow No. 1714), all three analysed placentae were infected with *T. gondii*, but no parasite DNA or inflammatory signs were detected in foetal tissues. It may be assumed that the infection was primarily limited to the placenta and the abortion occurred prior to foetal infection, probably due to placental insufficiency. In the remaining three cases (Sows 1187, 187 and 3308), *T. gondii* DNA was detected in foetal brain tissues, accounting for vertical transmission of the parasite (Table 1).

Although no parasites were microscopically detected in any H&E or in immunohistochemically-stained brain sections, mild focal non-suppurative encephalitis, perivasculitis and meningitis were observed in two stillborn piglets delivered by one of the seropositive sows (Sow No. 187), one of which had positive PCR results (Table 1). Although these lesions are not pathognomonic, they are highly suggestive of a *T. gondii* infection. In our set of samples, non-suppurative encephalitis did not appear to be a common finding in cases of reproductive failure due to causes other than toxoplasmosis, as it was not detected in any of the further 284 foetuses/piglets examined. In the last case (Sow 3308), a co-infection with PPV was demonstrated (Table 1). Porcine parvovirus is a primary pathogen and can cause reproductive failure in naïve sows, characterised by embryonic death and maternal resorption with subsequent return to oestrus or reduced litter size, fetal death and mummification, and stillbirths [24]. In our case, PPV was detected in both analysed mummies and it is possible that it had been the main trigger of the abortion. It was shown that PPV might enhance the effects of other viruses such as PCV-2, increasing the severity of the post-weaning multisystemic wasting syndrome (PMWS) [25]. However, it is not known if PPV may facilitate the vertical transmission or the multiplication of *T. gondii*.

In this study, DNA extraction was performed on formalin-fixed, paraffin-embedded tissues. As reported elsewhere [26], the length of intact DNA fragments that can be isolated from formalin fixed tissues is usually <650 bp, depending on the type and age of the samples. To overcome this issue, a PCR targeting a short (133 bp) DNA sequence was chosen [27] and the formalin-fixation was restricted to 24 h. However, the fixation procedure might have accounted for a lower rate of positive PCR results due to DNA fragmentation, leading to an underestimation of the real infection frequency.
In order to better estimate the real role of *T. gondii* as a cause of reproductive failure in sows, investigations to detect this parasite should be more frequently included in the routine differential diagnosis. As vertical transmission of *T. gondii* in sows occurs, a proper disposal of placentas and abortion material beyond the reach of cats can aid to interrupt the life cycle of this parasite at the farm level, avoiding its further dissemination.

Acknowledgements

We are grateful to the laboratory technical staff of the Institute of Veterinary Pathology (head Roseline Weilenmann), Vetsuisse-Faculty, University of Zurich, for technical help and to Prionics AG, Schlieren-Zurich, Switzerland (Patrick Buholzer) for providing the ELISA kits.

References

Table 1: Data from sows with placental infection/vertical transmission of *Toxoplasma gondii*

<table>
<thead>
<tr>
<th>Sow No.</th>
<th>Farm type</th>
<th>Farm No.</th>
<th>Gestation days</th>
<th>No. of foetuses/ piglets aborted/ farrowed</th>
<th>No. of foetuses/ stillborn piglets examined, size and weight</th>
<th>Real-time PCR for T. gondii (pos/neg)</th>
<th>Macroscopic/ histopathological changes</th>
<th>Immunohistochemical staining for T. gondii (pos/neg)</th>
<th>Further putative causes of reproductive failure detected</th>
</tr>
</thead>
</table>
| 171 | breeding g farm, indoor housing with outdoor yard and wallowing facilities | 5 | 71 (abortion) | unclear | 3 foetuses with their placentas, Nr.1: 21 cm, 308 g
Nr.2: 21 cm, 306 g
Nr.3: 16 cm, 85 g | pos (all 3 placentas) | foetus Nr. 3: mummification signs. | pos (1 of 3 placentae) | no |
| 118 | breeding g farm, exclusive indoor housing | 3 | 76 (abortion) | 13 foetuses | 2 foetuses with their placentas, Nr.1: 24 cm, 465 g
Nr.2: 21 cm, 400 g | pos (brain from foetus Nr. 1) | foetuses Nr. 1 and 2: petechiae in kidney cortex and eosinophilic infiltration in mesent. lymph nodes, foetus Nr. 2: eosinophilic infiltration and giant cells in thymus | neg | no |
| 187 | breeding g farm, indoor housing with outdoor yard | 7 | 116 | 8 normal piglets, 3 stillborms | 2 stillborns, Nr.1: 31 cm, 1,300 kg, without placenta
Nr.2: 38 cm, 2,150 kg, with placenta | pos (brain from stillborn Nr. 2) | stillborns Nr. 1 and 2: nonsuppurative encephalitis, perivasculitis, meningitis | neg | no |
| 330 | breeding g-fattening farm, | 3 | 112 | 9 normal piglets, 6 mummies with their mummy Nr. 2: multifocal dystrophic calcification | pos (brain from mummy) | mummy Nr. 2: multifocal dystrophic calcification | pos (2 of 2 placentae) | yes: both mummies: PPV-positive |
indoor housing
with outdoor yard

mummi es

placenta

y Nr. 2) in placenta

Nr. 1: 28 cm, 363 g
Nr. 2: 21 cm, 287 g
Graphical abstract
Highlights

24.1% of 108 Swiss sows with reproductive failure had antibodies against *T. gondii*

37.3% of 58 Swiss farms had *T. gondii*-seropositive sows.

Vertical transmission or placental infection was detected in at least 3.5% of sows