Measurement of prompt $\psi(2S)$ to J/ψ yield ratios in Pb-Pb and p-p collisions at $\sqrt{s_{NN}} = 2.76$ TeV

CMS Collaboration; Canelli, M F; Chiochia, V; Kilminster, B; Robmann, P; et al

Abstract: The ratio between the prompt $\psi(2S)$ and J/ψ yields, reconstructed via their decays into $\pi^+\pi^-$, is measured in Pb-Pb and p-p collisions at $s_{NN} = 2.76$ TeV. The analysis is based on Pb-Pb and p-p data samples collected by CMS at the Large Hadron Collider, corresponding to integrated luminosities of 150 b^{-1} and 5.4 pb^{-1}, respectively. The double ratio of measured yields ($N_{\psi(2S)}/N_{J/\psi}$)_{Pb-Pb}/($N_{\psi(2S)}/N_{J/\psi}$)_{p-p} is computed in three Pb-Pb collision centrality bins and two kinematic ranges: one at midrapidity, $|y|<1.6$, covering the transverse momentum range $6.5<p_T<30$ GeV/c, and the other at forward rapidity, $1.6<|y|<2.4$, extending to lower p_T values, $3<p_T<30$ GeV/c. The centrality-integrated double ratio changes from $0.45 \pm 0.13\text{(stat)} \pm 0.07\text{(syst)}$ in the first range to $1.67 \pm 0.34\text{(stat)} \pm 0.27\text{(syst)}$ in the second. This difference is most pronounced in the most central collisions.

DOI: https://doi.org/10.1103/PhysRevLett.113.262301

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-108063

Accepted Version

Originally published at:
CMS Collaboration; Canelli, M F; Chiochia, V; Kilminster, B; Robmann, P; et al (2014). Measurement of prompt $\psi(2S)$ to J/ψ yield ratios in Pb-Pb and p-p collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Physical Review Letters, 113:262301.
DOI: https://doi.org/10.1103/PhysRevLett.113.262301
Measurement of prompt $\psi(2S)$ to J/ψ yield ratios in PbPb and pp collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The CMS Collaboration

Abstract

The ratio between the prompt $\psi(2S)$ and J/ψ yields, reconstructed via their decays into $\mu^+\mu^-$, is measured in PbPb and pp collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The analysis is based on PbPb and pp data samples collected by CMS at the Large Hadron Collider, corresponding to integrated luminosities of 150 μb$^{-1}$ and 5.4 pb$^{-1}$, respectively. The double ratio of measured yields, $(N_{\psi(2S)} / N_{J/\psi})_{\text{PbPb}} / (N_{\psi(2S)} / N_{J/\psi})_{\text{pp}}$, is computed in three PbPb collision centrality bins and two kinematic ranges: one at midrapidity, $|y| < 1.6$, covering the transverse momentum range $6.5 < p_T < 30$ GeV/c, and the other at forward rapidity, $1.6 < |y| < 2.4$, extending to lower p_T values, $3 < p_T < 30$ GeV/c. The centrality-integrated double ratio changes from 0.45 ± 0.13 (stat) ± 0.07 (syst) in the first range to 1.67 ± 0.34 (stat) ± 0.27 (syst) in the second. This difference is most pronounced in the most central collisions.

The goal of the study of ultrarelativistic heavy-ion collisions is to create and characterize the quark-gluon plasma (QGP), a medium where quarks and gluons are no longer confined in hadrons [1]. Charmonia should dissociate when the Debye screening radius of this medium, which decreases with increasing QGP temperature, becomes smaller than the binding radius of the charmonium state [2]. Since the $\psi(2S)$ meson is less bound than the J/ψ, it should melt at lower temperatures [3], an idea consistent with charmonium suppression measured at the CERN SPS [4, 5]. At the CERN LHC, a suppression of J/ψ mesons in PbPb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{NN}} = 2.76$ TeV was observed by CMS [6] and ALICE [7, 8] via the nuclear modification factor, R_{AA}, the ratio of nucleus-nucleus and pp charmonium production yields normalized by the number of inelastic nucleon-nucleon collisions. The suppression increases with transverse momentum (p_T), exhibiting a strong centrality dependence at high p_T, but almost no dependence when integrated over p_T. Related results at the SPS and BNL RHIC are presented in Ref. [9] and references therein.

Given the large number ($O(100)$) of charm quarks produced per central PbPb collision at $\sqrt{s_{NN}} = 2.76$ TeV [10], charmonia may also be produced at the hadronization stage, through the combination of initially-uncorrelated charm and anticharm quarks [11, 12]. This mechanism should contribute mostly at low p_T [10]. Charmonium production is also affected by “cold nuclear matter” effects [10, 13, 14], such as nuclear modifications of the parton distribution functions. Recently, ALICE [15] and LHCb [16] observed J/ψ suppression in pPb collisions, while PHENIX [17] and ALICE [18] reported that the $\psi(2S)$ is more strongly suppressed than the J/ψ in dAu and pPb collisions, complementing analogous observations made by fixed-target experiments [19].

This Letter presents a measurement of the prompt $\psi(2S)$ and J/ψ yields (excluding production from decays of b hadrons) in PbPb and pp collisions at $\sqrt{s_{NN}} = 2.76$ TeV, using event samples collected by CMS with integrated luminosities of 150 μb$^{-1}$ and 5.4 pb$^{-1}$, respectively. Following related studies of the bottomonium family [20–22], the results are reported as a double ratio, $(N_{\psi(2S)}/N_{J/\psi})_{PbPb}/(N_{\psi(2S)}/N_{J/\psi})_{pp}$, so that efficiency and acceptance corrections cancel to a large extent, reducing the systematic uncertainties. Using a previous measurement of $R_{AA}(J/\psi)$ [6], a first measurement of $R_{AA}(\psi(2S))$ is derived.

The central feature of CMS is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon tracker, the crystal electromagnetic calorimeter, and the brass/scintillator hadron calorimeter. The silicon pixel and strip tracker measures charged-particle trajectories in the pseudorapidity range $|\eta| < 2.5$. Muons are detected in the interval $|\eta| < 2.4$ by gas-ionization detectors made of three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The muon p_T is measured with a resolution between 1 and 2% for a typical muon in this analysis. Two steel/quartz-fibre Cherenkov forward hadron (HF) calorimeters cover the range 2.9 < $|\eta|$ < 5.2 and are used for event selection and PbPb collision centrality determination. Two beam scintillator counters (BSC) are used for triggering and beam-halo rejection. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [23].

The measurements reported here are based on PbPb and pp events triggered by a hardware-based dimuon trigger without an explicit muon-momentum threshold. Inelastic hadronic PbPb collisions are selected using BSC and HF information, in coincidence with a bunch crossing [23]. Events are further filtered offline by requiring a reconstructed primary vertex and at least three towers in each HF with an energy deposit of more than 3 GeV per tower. Muons are reconstructed offline using tracks in the muon detectors (“standalone muons”) that are then
matched to tracks in the silicon tracker, using an algorithm optimized for the heavy-ion environment [24,25]. In addition, an iterative track reconstruction algorithm [26] is applied to the PbPb data, limited to cone regions defined by the standalone muons. The pp reconstruction algorithm includes an iterative tracking step in the full silicon tracker. The final parameters of the muon trajectory are obtained from a global fit of the standalone muon with a track in the silicon tracker. The single muon acceptance and identification criteria are the same as in Ref. [6]. Opposite-sign muon pairs are fitted with a common vertex constraint and are kept if the fit χ² probability is greater than 1%. Most of the non-prompt J/ψ and ψ(2S) mesons, originating from b-hadron decays, are rejected using the pseudo-proper decay length, ℓψ = Lxy mψ / pT, where Lxy is the transverse distance between the μ⁺μ⁻ vertex and the interaction point and mψ is the J/ψ or ψ(2S) mass. The ℓψ selection condition is tuned with Monte Carlo (MC) simulation studies, separately for the pp and PbPb collision systems, such that 90% of the prompt J/ψ and ψ(2S) are kept, typically rejecting 80% of the non-prompt ones. For these studies, unpolarized prompt and non-prompt J/ψ and ψ(2S) mesons are generated with PYTHIA 6.424 [27] and decayed with EVTGEN [28], while the final-state bremsstrahlung is simulated with PHOTOS [29].

The analysis is performed in two dimuon kinematic domains: the “midrapidity” domain covers the range |y| < 1.6, where the J/ψ and ψ(2S) mesons are only reconstructed for pT > 6.5 GeV/c, while the “forward rapidity” domain covers the range 1.6 < |y| < 2.4, where the acceptance extends down to pT = 3 GeV/c. Dimuons are restricted to pT < 30 GeV/c in order to have a well defined kinematic interval. The available PbPb data at forward rapidity could not be fitted reliably when split into the intervals 3 < pT < 6.5 GeV/c and 6.5 < pT < 30 GeV/c. Therefore, this analysis cannot differentiate between pT and rapidity dependent effects on the measured double ratios. The PbPb sample is split in three bins of collision centrality, defined using fractions of the inelastic hadronic cross section where 0% denotes the most central collisions: 40–100%, 20–40%, and 0–20%. This fraction is determined from the HF energy distribution [32]. Related variables, such as the number of nucleons participating in the collision (Npart), are evaluated using a Glauber-model calculation [33] and are only used to display the centrality dependence of the measurements. The average Npart values corresponding to the three centrality bins above are ⟨Npart⟩ = 32.8, 158.7, and 308.4, respectively.

Figure 1 shows the dimuon invariant-mass (mµ⁺µ⁻) distributions measured in central (0–20%) PbPb and pp collisions, for the midrapidity and forward rapidity bins. The results of unbinned maximum likelihood fits are also shown. Each charmonium resonance is described by the sum of a Gaussian function and a Crystal Ball (CB) function [34], with common mean m0, independent widths σG and σCB, and relative contribution of the Gaussian to the signal yield fG. In all cases, the fitted J/ψ mean agrees within 0.3% with the world average [35]. The resolution, after averaging the Gaussian and CB widths, is about 30 MeV/c² at midrapidity and 50 MeV/c² at forward rapidity, both for pp and PbPb data. The CB radiative tail parameters α and n, common to both charmonia, are fixed to the values obtained in fits to simulated distributions. The m0, σG, and σCB parameters of the ψ(2S) resonance shape match the J/ψ parameters, scaled by the ratio of their masses, mψ(2S)/mJ/ψ [35]. This scaling assumption has been validated in analyses of larger event samples [21,36]. The same value for fG is used in the definition of the ψ(2S) and J/ψ signal shapes. Six parameters are left free in the pp fit: m0, σG, σCB, fG, the J/ψ yield, and the ψ(2S) to J/ψ yield ratio. In the PbPb fits, instead, the double ratio replaces...
the $\psi(2S)$ to J/ψ ratio as one of the free parameters. In addition, given their smaller signal-to-background ratio, the PbPb data are fitted fixing the c_C/c_{CB} ratio to the value obtained in fits to MC distributions.

The background is described by Chebychev polynomials, of order (0 ≤ N ≤ 3) determined for each analysis bin with log-likelihood ratio (LLR) tests. The background shape is mostly determined by the kinematic distributions of the muons produced in meson decays, which are expected to change with collision centrality [6, 37, 38]. Once the background functions are selected, the pp and three PbPb centrality samples are fitted simultaneously. Since the signal shape does not depend on the collision centrality [6], the three PbPb centrality bins are fitted with common signal shape parameters, which are independent of the pp values; the four background shapes are independent. The simultaneous fit directly provides the three double ratios (one per centrality class), for each rapidity interval.
The systematic uncertainties from the fitting method are studied by varying the signal and background shapes as well as the fitted invariant-mass range. As an alternative signal shape, the sum of two CB functions with common mean and tail parameters is used, leaving all parameters free in the fit except for the mass scaling between the J/ψ and ψ(2S) means and widths. The uncertainty on the background is evaluated by considering three fit variations: (i) use as background shape an exponential function with a Chebychev polynomial of order $1 \leq N \leq 3$ (determined with a LLR test) as an argument; (ii) extend the fitted mass region to $1.8 < m_{\mu^+\mu^-} < 5\text{ GeV}/c^2$; (iii) fit the J/$\psi$ and ψ(2S) regions (below 3.5 GeV/c^2 and above 3.3 GeV/c^2, respectively) with independent background functions. The maximum deviation from the nominal fit is added in quadrature with the signal shape uncertainty to obtain the fit systematic uncertainty in the double ratio, which varies between 8% at midrapidity and 28% at forward rapidity. The dominant contribution to this uncertainty changes from bin to bin because of the strongly varying signal-to-background ratio. A cross-check made on the centrality-integrated sample shows that counting the signal yields above a polynomial exclusively fitted to the sidebands gives a result consistent with the nominal values.

Assuming no change in their polarizations, the J/ψ and ψ(2S) acceptances are independent of the collision system and cancel in the double ratio. Residual effects from imperfect double-ratio cancellations of the muon reconstruction and trigger efficiency corrections have been evaluated with MC simulation studies. The MC double ratio of the signal efficiencies is compatible with unity. The MC statistical uncertainties, 1% at midrapidity and 5% at forward rapidity, are assigned as the systematic uncertainties on the assumption that the efficiency corrections cancel. Differences between the MC and data distributions [6] have a negligible impact on the efficiency double ratio. The same charmonium p_T and rapidity distributions have been used in the generation of pp and PbPb events. The efficiency double-ratio varies by less than 1% when changing the kinematic distributions in PbPb within a reasonable range, evaluated using R_{AA} measurements as a function of p_T and rapidity [6].

The prompt charmonia are simulated unpolarized, a scenario in good agreement with pp measurements [39–41]. Alternative scenarios have been considered, where the polarizations change significantly from the J/ψ to the ψ(2S) and/or from pp to PbPb collisions. The impact is completely negligible on the double ratio of the measurement efficiencies, while the double ratio of the acceptances can change by $\approx 20\%$. As in previous analyses [20–22], such possible physics effects are not considered as systematic uncertainties.

In pp collisions, around 20–25% of the charmonium yields are due to b-hadron decays [36]; no evidence for different values has been seen in PbPb collisions [6]. Considering a b-hadron rejection inefficiency of about 20%, the prompt J/ψ and ψ(2S) yields include a residual contamination from b-hadron decays of up to 5%. These b-hadron contaminations are conservatively assumed to be independent in the four yields entering the double ratio.

Adding in quadrature the uncertainties mentioned above leads to total systematic uncertainties of 13–30%, values smaller than the corresponding statistical uncertainties.

The double ratio of measured yields, $(N_{\psi(2S)}/N_{J/\psi})_{\text{PbPb}}/(N_{\psi(2S)}/N_{J/\psi})_{\text{pp}}$, is shown in Fig. 2 as a function of centrality, for both kinematic bins. The quadratic sum of the pp statistical and systematic uncertainties ($\approx 6\%$) is common to all centralities. The centrality-integrated results are also displayed, in the right panel. In the most peripheral PbPb collisions, no significant ψ(2S) signal has been observed in the midrapidity bin and an upper limit of 0.47 at 95% confidence level (CL) is set on the double ratio, using the Feldman–Cousins method [42].

In the midrapidity bin, restricted to $p_T > 6.5\text{ GeV}/c$, the double ratio is below unity in all cen-
Figure 2: Double ratio of measured yields, $\frac{N_\psi(2S)/N_{J/\psi}}{N_{PbPb}/N_{J/\psi}}$, as a function of centrality, for the midrapidity (blue squares) and forward rapidity (red circles, slightly shifted) analysis bins. The centrality-integrated results are displayed in the right panel. Statistical (systematic) uncertainties are shown as bars (boxes). The boxes at unity indicate the (global) pp uncertainties.

In summary, the CMS measurements reported in this Letter show two interesting observations. First, $\psi(2S)$ production is suppressed in PbPb collisions with respect to pp collisions, in both kinematic regions investigated. Second, in comparison to J/ψ production and in the most central PbPb collisions, $\psi(2S)$ production is suppressed in the range $|y| < 1.6$ and $6.5 < p_T < 30 \text{ GeV}/c$, as expected in the sequential melting scenario and matching the corresponding bottomonia pattern [21], while it is enhanced in the range $1.6 < |y| < 2.4$ and $3 < p_T < 30 \text{ GeV}/c$. Such behavior implies the presence of physics processes that either cause the p_T dependence of $R_{AA}(\psi(2S))$ to be weaker than for the $R_{AA}(J/\psi)$ or cause the $R_{AA}(\psi(2S))$ to start decreasing at higher p_T. Alternatively, these processes would have to have the opposite dependence...
with increasing rapidity. Larger event samples are needed to evaluate in more detail how these observations depend separately on the p_T and rapidity of the charmonium states.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Estadual Paulistaa, Universidade Federal do ABCb, S\~ao Paulo, Brazil
C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomea, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.8

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran9, A. Ellithi Kamel10, M.A. Mahmoud11, A. Radi12,13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradis

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia a, b, L. Barbone a, b, C. Calabria a, b, S.S. Chhibra a, b, A. Colaleo a, D. Creanza a, c, N. De Filippis a, c, M. De Palma a, b, L. Fiore a, G. Iaselli a, c, G. Maggi a, b, c, M. Maggi a, S. My a, c, S. Nuzzo a, b, A. Pompili a, b, G. Pugliese a, c, R. Radogna a, b, 2, G. Selvaggi a, b, L. Silvestris a, 2, G. Singh a, b, R. Venditti a, b, P. Verwilligen a, G. Zito a

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi a, A.C. Benvenuti a, D. Bonacorsi a, b, S. Brabant-Giacomelli a, b, L. Brigliadori a, b, R. Campanini a, b, P. Capiluppi a, b, A. Castro a, b, F.R. Cavallo a, G. Codispoti a, b, M. Cuffiani a, b, G.M. Dallavalle a, F. Fabbri a, A. Fanfani a, b, D. Fasanella a, b, P. Giacomelli a, C. Grandi a, L. Guiducci a, b, S. Marcellini a, G. Masetti a, b, A. Montanari a, F.L. Navarra a, b, A. Perrotta a, F. Primavera a, b, A.M. Rossi a, b, T. Rovelli a, b, G.P. Sirola a, b, N. Tosi a, b, R. Travaglini a, b

INFN Sezione di Catania a, Università di Catania b, CSFNSM c, Catania, Italy
S. Albergo a, b, G. Cappello a, M. Chioboli a, b, S. Costa a, b, F. Giordano a, 2, R. Potenza a, b, A. Tricomi a, b, C. Tuve a, b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglio a, V. Ciulli a, b, C. Cividini a, R. D’Alessandro a, b, E. Focardi a, b, E. Gallo a, S. Gonzi a, b, V. Gori a, b, 2, P. Lenzi a, b, M. Meschini a, S. Paololetti a, G. Sguazzoni a, A. Tropiano a, b

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
F. Ferro a, M. Lo Vetere a, b, E. Robutti a, S. Tosi a, b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
M.E. Dinardo a, b, S. Fiorendi a, b, 2, S. Gennai a, 2, R. Gerosa a, b, 2, A. Ghezzi a, b, P. Govoni a, b, M.T. Lucchini a, b, 2, S. Malvezzi a, R.A. Manzoni a, b, A. Martelli a, b, B. Marzocchi a, b, D. Menasce a, L. Moroni a, M. Paganoni a, b, D. Pedrini a, S. Ragazzi a, b, N. Redaelli a, T. Tabarelli de Fatis a, b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Università della Basilicata (Potenza) c, Università G. Marconi (Roma) d, Napoli, Italy
S. Buontempo a, N. Cavallo a, c, S. Di Guida a, d, 2, F. Fabozzi a, c, A.O.M. Iorio a, b, L. Lista a, S. Meola a, d, 2, M. Merola a, P. Paolucci a, 2
INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, S.P. Ratti, C. Riccardi, P. Salvini, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangotti, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, F. Romero, A. Saha, A. Santocchia, A. Spiezia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma, Università di Roma, Roma, Italy

INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Torino, Italy

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. Licata, M. Marone, D. Montanino, A. Schizzi, T. Umer, A. Zanetti

Kangwon National University, Chuncheon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyoungpoong National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
T.J. Kim

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh
University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, S. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krophcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskiy, O. Kodolova, V. Korotkich, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
E. Brownson, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demaria, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at Cairo University, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
17: Also at Eötvös Loránd University, Budapest, Hungary
18: Also at University of Debrecen, Debrecen, Hungary
19: Also at University of Visva-Bharati, Santiniketan, India
20: Now at King Abdulaziz University, Jeddah, Saudi Arabia
21: Also at University of Ruhuna, Matara, Sri Lanka
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at Sharif University of Technology, Tehran, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy
26: Also at Università degli Studi di Siena, Siena, Italy
27: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
28: Also at Purdue University, West Lafayette, USA
29: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
30: Also at Institute for Nuclear Research, Moscow, Russia
31: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
32: Also at INFN Sezione di Padova; Università di Padova; Università di Trento (Trento), Padova, Italy
33: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
34: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
35: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
36: Also at University of Athens, Athens, Greece
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at Cag University, Mersin, Turkey
43: Also at Mersin University, Mersin, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at Ozyegin University, Istanbul, Turkey
46: Also at Marmara University, Istanbul, Turkey
47: Also at Kafkas University, Kars, Turkey
48: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
49: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
50: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
51: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
52: Also at Argonne National Laboratory, Argonne, USA
53: Also at Erzincan University, Erzincan, Turkey
54: Also at Yıldız Technical University, Istanbul, Turkey
55: Also at Texas A&M University at Qatar, Doha, Qatar
56: Also at Kyungpook National University, Daegu, Korea