Header

UZH-Logo

Maintenance Infos

An important role of the SDF-1/CXCR4 axis in chronic skin inflammation


Zgraggen, Silvana; Huggenberger, Reto; Kerl, Katrin; Detmar, Michael (2014). An important role of the SDF-1/CXCR4 axis in chronic skin inflammation. PLoS ONE, 9(4):e93665.

Abstract

Inflammatory angiogenesis and vascular remodeling play key roles in the chronic inflammatory skin disease psoriasis, but little is known about the molecular mediators of vascular activation. Based on the reported elevated mRNA levels of the angiogenic chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 in psoriasis, we investigated the relevance of the SDF-1/CXCR4 axis in two experimental models of chronic psoriasis-like skin inflammation. The cutaneous expression of both SDF-1 and CXCR4 was upregulated in the inflamed skin of K14-VEGF-A transgenic mice and in imiquimod-induced skin inflammation, with expression of CXCR4 by blood vessels and macrophages. Treatment with the CXCR4 antagonist AMD3100 potently inhibited skin inflammation in both models, associated with reduced inflammatory angiogenesis and inflammatory cell accumulation, including dermal CD4+ cells and intraepidermal CD8+ T cells. Similar anti-inflammatory effects were seen after treatment with a neutralizing anti-SDF-1 antibody. In vitro, inhibition of CXCR4 blocked SDF-1-induced chemotaxis of CD11b+ splenocytes, in agreement with the reduced number of macrophages after in vivo CXCR4 blockade. Our results reveal an important role of the SDF-1/CXCR4 axis in skin inflammation and inflammatory angiogenesis, and they indicate that inhibition of the SDF-1/CXCR4 axis might serve as a novel therapeutic strategy for chronic inflammatory skin diseases.

Abstract

Inflammatory angiogenesis and vascular remodeling play key roles in the chronic inflammatory skin disease psoriasis, but little is known about the molecular mediators of vascular activation. Based on the reported elevated mRNA levels of the angiogenic chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 in psoriasis, we investigated the relevance of the SDF-1/CXCR4 axis in two experimental models of chronic psoriasis-like skin inflammation. The cutaneous expression of both SDF-1 and CXCR4 was upregulated in the inflamed skin of K14-VEGF-A transgenic mice and in imiquimod-induced skin inflammation, with expression of CXCR4 by blood vessels and macrophages. Treatment with the CXCR4 antagonist AMD3100 potently inhibited skin inflammation in both models, associated with reduced inflammatory angiogenesis and inflammatory cell accumulation, including dermal CD4+ cells and intraepidermal CD8+ T cells. Similar anti-inflammatory effects were seen after treatment with a neutralizing anti-SDF-1 antibody. In vitro, inhibition of CXCR4 blocked SDF-1-induced chemotaxis of CD11b+ splenocytes, in agreement with the reduced number of macrophages after in vivo CXCR4 blockade. Our results reveal an important role of the SDF-1/CXCR4 axis in skin inflammation and inflammatory angiogenesis, and they indicate that inhibition of the SDF-1/CXCR4 axis might serve as a novel therapeutic strategy for chronic inflammatory skin diseases.

Statistics

Citations

14 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

10 downloads since deposited on 10 Feb 2015
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Dermatology Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2014
Deposited On:10 Feb 2015 15:29
Last Modified:08 Dec 2017 12:03
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0093665
PubMed ID:24695674

Download

Download PDF  'An important role of the SDF-1/CXCR4 axis in chronic skin inflammation'.
Preview
Content: Published Version
Filetype: PDF
Size: 11MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)