Header

UZH-Logo

Maintenance Infos

Validity of a simple Internet-based outcome-prediction tool in patients with total hip replacement: a pilot study


Stöckli, Cornel; Theiler, Robert; Sidelnikov, Eduard; Balsiger, Maria; Ferrari, Stephen M; Buchzig, Beatus; Uehlinger, Kurt; Riniker, Christoph; Bischoff-Ferrari, Heike A (2014). Validity of a simple Internet-based outcome-prediction tool in patients with total hip replacement: a pilot study. Journal of Telemedicine and Telecare, 20(3):117-122.

Abstract

We developed a user-friendly Internet-based tool for patients undergoing total hip replacement (THR) due to osteoarthritis to predict their pain and function after surgery. In the first step, the key questions were identified by statistical modelling in a data set of 375 patients undergoing THR. Based on multiple regression, we identified the two most predictive WOMAC questions for pain and the three most predictive WOMAC questions for functional outcome, while controlling for comorbidity, body mass index, age, gender and specific comorbidities relevant to the outcome. In the second step, a pilot study was performed to validate the resulting tool against the full WOMAC questionnaire among 108 patients undergoing THR. The mean difference between observed (WOMAC) and model-predicted value was -1.1 points (95% confidence interval, CI -3.8, 1.5) for pain and -2.5 points (95% CI -5.3, 0.3) for function. The model-predicted value was within 20% of the observed value in 48% of cases for pain and in 57% of cases for function. The tool demonstrated moderate validity, but performed weakly for patients with extreme levels of pain and extreme functional limitations at 3 months post surgery. This may have been partly due to early complications after surgery. However, the outcome-prediction tool may be useful in helping patients to become better informed about the realistic outcome of their THR.

Abstract

We developed a user-friendly Internet-based tool for patients undergoing total hip replacement (THR) due to osteoarthritis to predict their pain and function after surgery. In the first step, the key questions were identified by statistical modelling in a data set of 375 patients undergoing THR. Based on multiple regression, we identified the two most predictive WOMAC questions for pain and the three most predictive WOMAC questions for functional outcome, while controlling for comorbidity, body mass index, age, gender and specific comorbidities relevant to the outcome. In the second step, a pilot study was performed to validate the resulting tool against the full WOMAC questionnaire among 108 patients undergoing THR. The mean difference between observed (WOMAC) and model-predicted value was -1.1 points (95% confidence interval, CI -3.8, 1.5) for pain and -2.5 points (95% CI -5.3, 0.3) for function. The model-predicted value was within 20% of the observed value in 48% of cases for pain and in 57% of cases for function. The tool demonstrated moderate validity, but performed weakly for patients with extreme levels of pain and extreme functional limitations at 3 months post surgery. This may have been partly due to early complications after surgery. However, the outcome-prediction tool may be useful in helping patients to become better informed about the realistic outcome of their THR.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Geriatric Medicine
Dewey Decimal Classification:Unspecified
Language:English
Date:April 2014
Deposited On:26 Feb 2015 16:11
Last Modified:05 Apr 2016 19:07
Publisher:Royal Society of Medicine Press
ISSN:1357-633X
Publisher DOI:https://doi.org/10.1177/1357633X13519040
PubMed ID:24585892

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations