Mitochondrial dysfunction and decrease in body weight of transgenic knock-in mouse model for TDP-43: the question of glucose?

Jawaid, A; Gapp, K; Schulz, P E

DOI: https://doi.org/10.1074/jbc.L114.572651

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-109120
Published Version

Originally published at:
DOI: https://doi.org/10.1074/jbc.L114.572651
Mitochondrial Dysfunction and Decrease in Body Weight of Transgenic Knock-in Mouse Model for TDP-43: the Question of Glucose?

Stribl et al. (1) observed 10% reduction in body weight and an altered lipid profile in a TDP-43 knock-in mouse model. These observations complement the emerging hypothesis that metabolic abnormalities are characteristic of TDP-43 proteinopathies, notably amyotrophic lateral sclerosis (ALS) (2). However, there are a number of inconsistencies in their observations and the data from ALS patients. Furthermore, we have some reservations about the interpretation of some of the data.

In the Summary and under “Discussion,” Stribl et al. (1) mention that TDP-43 heterozygous mutants have an increase of glucose in the blood. However, Fig. 7 shows no difference in the level of blood glucose in either fasted or ad libitum fed mutant mice when compared with controls (1). Additionally, since pre-morbid diabetes mellitus delays the onset of ALS by 4 years (2), an increase in glucose is expected to be beneficial rather than detrimental in ALS models, an effect that has also been shown in TDP-43 Caenorhabditis elegans models (3). Further, Stribl et al. (1) demonstrate that the morphology and function of mitochondria are impaired in TDP-43 mutant mice. Hence, hypoglycemia rather than hyperglycemia is expected, because under mitochondrial impairment, the rate of glucose consumption through glycolysis is increased. Indeed, hypoglycemia is a feature of many mitochondrial disorders (4). One of the most probable reasons for increased blood glucose in TDP-43 knock-in mice is increased resistance to insulin, a feature of hypermetabolism observed in some ALS patients (5). To address this possibility, analyses of glucose and insulin tolerance would be essential.

Ali Jawaid†1, Katharina Gapp‡, and Paul E. Schulz§
Brain Research Institute, University of Zurich/Swiss Federal Institute of Technology, Zurich, Switzerland and Department of Neurology, University of Texas-Health Medical School, Houston, Texas


DOI 10.1074/jbc.L114.572651

1E-mail: jawaid@sifo.uzh.ch, alijawaid84@gmail.com
Mitochondrial Dysfunction and Decrease in Body Weight of Transgenic Knock-in
Mouse Model for TDP-43: the Question of Glucose?
Ali Jawaid, Katharina Gapp and Paul E. Schulz

doi: 10.1074/jbc.L114.572651

Access the most updated version of this article at http://www.jbc.org/content/289/26/18593

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 5 references, 1 of which can be accessed free at
http://www.jbc.org/content/289/26/18593.full.html#ref-list-1