Header

UZH-Logo

Maintenance Infos

Epigenetics in rheumatoid arthritis


Klein, Kerstin; Gay, Steffen (2015). Epigenetics in rheumatoid arthritis. Current Opinion in Rheumatology, 27(1):76-82.

Abstract

PURPOSE OF REVIEW To give an overview of recently published articles addressing the role of epigenetic modifications in rheumatoid arthritis (RA). Here we focused on DNA methylation and posttranslational histone modifications. RECENT FINDINGS Recent studies attempted to link epigenetic modifications with genetic or environmental risk factors for RA. There is evidence that histone deacetylases confer effects of environmental triggers such as smoking, diet or therapy on expression levels of target genes. Additionally, disturbed methylation patterns and cell-type specific histone methylation marks were identified as potential mediators of genetic risk in RA. Altered methylome signatures were found in several cell types in RA, first of all RA synovial fibroblasts, and contribute to the intrinsic fibroblast activation. The reversal of DNA hypomethylation by inhibiting the polyamine recycling pathway was suggested as new epigenetic therapy in RA. Moreover, targeting epigenetic reader proteins, such as bromodomain proteins, emerged as a new field in drug development and the first studies underscored the potential of these drugs not only in malignant and inflammatory conditions but also in autoimmune diseases. SUMMARY Epigenetic factors represent a promising area to link genetics, regulation of gene expression and environmental risk factors.

Abstract

PURPOSE OF REVIEW To give an overview of recently published articles addressing the role of epigenetic modifications in rheumatoid arthritis (RA). Here we focused on DNA methylation and posttranslational histone modifications. RECENT FINDINGS Recent studies attempted to link epigenetic modifications with genetic or environmental risk factors for RA. There is evidence that histone deacetylases confer effects of environmental triggers such as smoking, diet or therapy on expression levels of target genes. Additionally, disturbed methylation patterns and cell-type specific histone methylation marks were identified as potential mediators of genetic risk in RA. Altered methylome signatures were found in several cell types in RA, first of all RA synovial fibroblasts, and contribute to the intrinsic fibroblast activation. The reversal of DNA hypomethylation by inhibiting the polyamine recycling pathway was suggested as new epigenetic therapy in RA. Moreover, targeting epigenetic reader proteins, such as bromodomain proteins, emerged as a new field in drug development and the first studies underscored the potential of these drugs not only in malignant and inflammatory conditions but also in autoimmune diseases. SUMMARY Epigenetic factors represent a promising area to link genetics, regulation of gene expression and environmental risk factors.

Statistics

Citations

17 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

42 downloads since deposited on 11 Mar 2015
32 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:January 2015
Deposited On:11 Mar 2015 17:18
Last Modified:05 Apr 2016 19:07
Publisher:Lippincott Williams & Wilkins
ISSN:1040-8711
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1097/BOR.0000000000000128
PubMed ID:25415526

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 567kB
View at publisher