Header

UZH-Logo

Maintenance Infos

Cerebellar gray and white matter volume and their relation with age and manual motor performance in healthy older adults


Koppelmans, Vincent; Hirsiger, Sarah; Mérillat, Susan; Jäncke, Lutz; Seidler, Rachael D (2015). Cerebellar gray and white matter volume and their relation with age and manual motor performance in healthy older adults. Human Brain Mapping, 36(6):2352-2363.

Abstract

OBJECTIVES

Functional neuroimaging and voxel-based morphometry studies have confirmed the important role of the cerebellum in motor behavior. However, little is known about the relationship between cerebellar gray (GMv) and white matter (WMv) volume and manual motor performance in aging individuals. This study aims to quantify the relationship between cerebellar tissue volume and manual motor performance.

EXPERIMENTAL DESIGN

To gain more insight into cerebellar function and how it relates to the role of the primary motor cortex (M1), we related cerebellar GMv, WMv, and M1v to manual motor performance in 217 healthy older individuals. Left and right cerebellar GMv and WMv, and M1v were obtained using FreeSurfer. The following motor measures were obtained: grip force, tapping speed, bimanual visuomotor coordination, and manual dexterity.

PRINCIPAL OBSERVATIONS

Significant positive relationships were observed between cerebellar GMv and WMv and grip strength, right cerebellar WMv and right-hand tapping speed, right cerebellar WMv and dexterity, M1v and grip strength, and right M1v and left-hand dexterity, though effect sizes were small.

CONCLUSIONS

Our results show that cerebellar GMv and WMv are differently associated with manual motor performance. These associations partly overlap with the brain-behavior associations between M1 and manual motor performance. Not all observed associations were lateralized (i.e., ipsilateral cerebellar and contralateral M1v associations with motor performance), which could point to age-related neural dedifferentiation. The current study provides new insights in the role of the cerebellum in manual motor performance. In consideration of the small effect sizes replication studies are needed to validate these results. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc.

Abstract

OBJECTIVES

Functional neuroimaging and voxel-based morphometry studies have confirmed the important role of the cerebellum in motor behavior. However, little is known about the relationship between cerebellar gray (GMv) and white matter (WMv) volume and manual motor performance in aging individuals. This study aims to quantify the relationship between cerebellar tissue volume and manual motor performance.

EXPERIMENTAL DESIGN

To gain more insight into cerebellar function and how it relates to the role of the primary motor cortex (M1), we related cerebellar GMv, WMv, and M1v to manual motor performance in 217 healthy older individuals. Left and right cerebellar GMv and WMv, and M1v were obtained using FreeSurfer. The following motor measures were obtained: grip force, tapping speed, bimanual visuomotor coordination, and manual dexterity.

PRINCIPAL OBSERVATIONS

Significant positive relationships were observed between cerebellar GMv and WMv and grip strength, right cerebellar WMv and right-hand tapping speed, right cerebellar WMv and dexterity, M1v and grip strength, and right M1v and left-hand dexterity, though effect sizes were small.

CONCLUSIONS

Our results show that cerebellar GMv and WMv are differently associated with manual motor performance. These associations partly overlap with the brain-behavior associations between M1 and manual motor performance. Not all observed associations were lateralized (i.e., ipsilateral cerebellar and contralateral M1v associations with motor performance), which could point to age-related neural dedifferentiation. The current study provides new insights in the role of the cerebellum in manual motor performance. In consideration of the small effect sizes replication studies are needed to validate these results. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc.

Statistics

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
08 University Research Priority Programs > Dynamics of Healthy Aging
Dewey Decimal Classification:150 Psychology
Uncontrolled Keywords:DoktoratPSYCH
Language:English
Date:19 February 2015
Deposited On:12 Mar 2015 09:34
Last Modified:05 Apr 2016 19:10
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1065-9471
Publisher DOI:https://doi.org/10.1002/hbm.22775
PubMed ID:25704867

Download

Full text not available from this repository.
View at publisher