Header

UZH-Logo

Maintenance Infos

Female sterility associated with increased clonal propagation suggests a unique combination of androdioecy and asexual reproduction in populations of Cardamine amara (Brassicaceae)


Tedder, Andrew; Helling, Matthias; Pannell, John R; Shimizu-Inatsugi, Rie; Kawagoe, Tetsuhiro; van Campen, Julia; Sese, Jun; Shimizu, Kentaro K (2015). Female sterility associated with increased clonal propagation suggests a unique combination of androdioecy and asexual reproduction in populations of Cardamine amara (Brassicaceae). Annals of Botany, 115(5):763-776.

Abstract

Background and Aims: The coexistence of hermaphrodites and female-sterile individuals, or androdioecy, has been documented in only a handful of plants and animals. This study reports its existence in the plant species Cardamine amara (Brassicaceae), in which female-sterile individuals have shorter pistils than seed-producing hermaphrodites. - Methods: Morphological analysis, in situ manual pollination, microsatellite genotyping and differential gene expression analysis using Arabidopsis microarrays were used to delimit variation between female-sterile individuals and hermaphrodites. - Key Results: Female sterility in C. amara appears to be caused by disrupted ovule development. It was associated with a 2.4- to 2.9-fold increase in clonal propagation. This made the pollen number of female-sterile genets more than double that of hermaphrodite genets, which fulfils a condition of co-existence predicted by simple androdioecy theories.When female-sterile individuals were observed in wild androdioecious populations, their ramet frequencies ranged from 5 to 54 %; however, their genet frequencies ranged from 11 to 29 %, which is consistent with the theoretically predicted upper limit of 50 %. - Conclusions: The results suggest that a combination of sexual reproduction and increased asexual proliferation by female-sterile individuals probably explains the invasion and maintenance of female sterility in otherwise hermaphroditic populations. To our knowledge, this is the first report of the coexistence of female sterility and hermaphrodites in the Brassicaceae.

Abstract

Background and Aims: The coexistence of hermaphrodites and female-sterile individuals, or androdioecy, has been documented in only a handful of plants and animals. This study reports its existence in the plant species Cardamine amara (Brassicaceae), in which female-sterile individuals have shorter pistils than seed-producing hermaphrodites. - Methods: Morphological analysis, in situ manual pollination, microsatellite genotyping and differential gene expression analysis using Arabidopsis microarrays were used to delimit variation between female-sterile individuals and hermaphrodites. - Key Results: Female sterility in C. amara appears to be caused by disrupted ovule development. It was associated with a 2.4- to 2.9-fold increase in clonal propagation. This made the pollen number of female-sterile genets more than double that of hermaphrodite genets, which fulfils a condition of co-existence predicted by simple androdioecy theories.When female-sterile individuals were observed in wild androdioecious populations, their ramet frequencies ranged from 5 to 54 %; however, their genet frequencies ranged from 11 to 29 %, which is consistent with the theoretically predicted upper limit of 50 %. - Conclusions: The results suggest that a combination of sexual reproduction and increased asexual proliferation by female-sterile individuals probably explains the invasion and maintenance of female sterility in otherwise hermaphroditic populations. To our knowledge, this is the first report of the coexistence of female sterility and hermaphrodites in the Brassicaceae.

Statistics

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

49 downloads since deposited on 19 Mar 2015
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
08 University Research Priority Programs > Evolution in Action: From Genomes to Ecosystems
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:March 2015
Deposited On:19 Mar 2015 13:43
Last Modified:05 Apr 2016 19:11
Publisher:Oxford University Press
ISSN:0305-7364
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/aob/mcv006

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 815kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations