The mouse gene for hypoxia-inducible factor-1alpha. Genomic organization, expression and characterization of an alternative first exon and 5’ flanking sequence

Wenger, R H; Rolfs, A; Kvietikova, I; Spielmann, P; Zimmermann, D R; Gassmann, M

Abstract: The ubiquitously expressed hypoxia-inducible factor-1 (HIF-1) is involved in expression of a large number of oxygen-regulated genes. HIF-1 is a heterodimer consisting of an alpha and a beta subunit, both belonging to the basic-helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator-Sim (PAS) family of transcription factors. Whereas HIF-1alpha is a novel member of this family, HIF-1beta is identical to the aryl hydrocarbon receptor nuclear translocator, previously recognized to be involved in xenobiotic metabolism. cDNA cloning revealed that mouse HIF-1alpha can be expressed as two mRNA isoforms containing alternative 5’ untranslated regions and two different predicted translational start sites. We cloned and characterized 20.5 kb of the mouse HIF-1alpha gene (Hif1a) containing exon II-XV. The two alternative first exons, I.1 and I.2, are separated from exon II by approximately 24 kb and 17 kb, respectively. We also sequenced Hif1a exon I.1 and flanking regions, and mapped a single exon I.1 transcription initiation site. Reverse transcription PCR analysis of total RNA derived from normoxic and hypoxic mouse hepatoma and fibroblast cell lines suggested that the two alternative mRNA isoforms are constitutively coexpressed in these cells, and that two different promoters drive transcription of HIF-1alpha. A minimal exon I.1 promoter was identified which moderately activated heterologous gene expression, indicating that additional cis-elements are required for efficient HIF-1alpha transcription in vivo.

DOI: https://doi.org/10.1111/j.1432-1033.1997.t01-1-00155.x

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-11
Published Version

Originally published at:
The mouse gene for hypoxia-inducible factor-1α
Genomic organization, expression and characterization of an alternative first exon and 5′ flanking sequence

Roland H. WENGER¹, Andreas ROLFS¹, Ivica KVIETIKOVA¹, Patrick SPIELMANN¹, Dieter R. ZIMMERMANN² and Max GASSMANN¹

¹ Institute of Physiology, University of Zürich-Irchel, Switzerland
² Department of Pathology, University of Zürich, Switzerland

(Received 22 January 1997) – EJB 97 0099/2

The ubiquitously expressed hypoxia-inducible factor-1 (HIF-1) is involved in expression of a large number of oxygen-regulated genes, HIF-1 is a heterodimer consisting of an α and a β subunit, both belonging to the basic-helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator-Sim (PAS) family of transcription factors. Whereas HIF-1α is a novel member of this family, HIF-1β is identical to the aryl hydrocarbon receptor nuclear translocator, previously recognized to be involved in xenobiotic metabolism. cDNA cloning revealed that mouse HIF-1α can be expressed as two mRNA isoforms containing alternative 5′ untranslated regions and two different predicted translational start sites. We cloned and characterized 20.5 kb of the mouse HIF-1α gene (Hif1α) containing exon II–XV. The two alternative first exons, I.1 and I.2, are separated from exon II by approximately 24 kb and 17 kb, respectively. We also sequenced Hif1α exon I.1 and flanking regions, and mapped a single exon I.1 transcription initiation site. Reverse transcription PCR analysis of total RNA derived from normoxic and hypoxic mouse hepatoma and fibroblast cell lines suggested that the two alternative mRNA isoforms are constitutively co-expressed in these cells, and that two different promoters drive transcription of HIF-1α. A minimal exon I.1 promoter was identified which moderately activated heterologous gene expression, indicating that additional cis-elements are required for efficient HIF-1α transcription in vivo.

Keywords: erythropoietin; gene expression; hypoxia; promoter; transcription.

Mammalian organisms have developed multiple protective mechanisms to adapt to reduced oxygen concentrations (hypoxia) at the systemic, local and cellular levels. Adaptation to acute systemic hypoxia is achieved by increasing ventilation, which is triggered by the carotid body. Prolonged hypoxia upregulates the synthesis of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis in the carotid body. Adaptation to chronic systemic hypoxia also includes an increase in the oxygen-transport capacity by enhanced erythropoiesis which is dependent on the erythropoietin concentration in the blood. Expression of both tyrosine hydroxylase and erythropoietin is regulated directly as a function of the oxygen concentration at the levels of transcription and mRNA stability (reviewed in [1–4]). Vascular endothelial growth factor (VEGF) provides an example of adaptation to local hypoxia. By inducing angiogenesis, VEGF induction leads to increased vascularization and, hence, to decreased oxygen diffusion distances [5]. At the cellular level, hypoxia induces a switch from oxidative phosphorylation to glycolysis as the main source of ATP production. As a consequence, the expression of glucose transporters [6–8] and glycolytic enzymes [9–12] is increased.

At all of these levels, the signalling pathways transmitting the signal from an operationally defined putative heme oxygen sensor to the nucleus seem to share the transcription factor hypoxia-inducible factor 1 (HIF-1) (reviewed in [2–4, 13]). HIF-1 was originally detected as a factor binding to an element in the erythropoietin 3′ flanking region that is critically involved in hypoxic activation of erythropoietin gene transcription [14], and has subsequently been demonstrated to be involved in hypoxic regulation of all the genes mentioned above [7, 9–12, 15–19]. In addition, HIF-1 has also been implicated in oxygen-regulated expression of the genes encoding inducible nitric oxide synthase [20], VL30 retrotransposon [21] and transferrin (Rolfs, A., Kvitikova, I., Gassmann, M. and Wenger, R. H., unpublished results) and, therefore, it appears that HIF-1 functions as a key regulator of oxygen-dependent gene expression. The widespread nature of HIF-1 expression and function has been confirmed by reporter gene experiments and DNA-binding studies in many different mammalian cell lines [22, 23] and recently, an HIF-1-like activity has even been detected in insect cells [24].

Taking advantage of the DNA-binding properties of HIF-1, it was possible to purify the two subunits which constitute human HIF-1 [25], and subsequently also to clone and sequence them [26]. Both subunits (termed HIF-1α and HIF-1β) belong to a subfamily of basic-helix-loop-helix (bHLH) transcription factors which share a region of homology termed PAS (reviewed...
in [27, 28]). PAS stands for the prototype members of this family: the *Drosophila* proteins period (Per) and single minded (Sim), and the heterodimeric, dioxin-activated complex aryl hydrocarbon receptor (AhR)/aryl hydrocarbon receptor nuclear translocator (ARNT). Other members of the PAS family include the *Drosophila* proteins tracheless (Trh) [29, 30] and similar (Sima) [31], mouse and rat ARNT2 [32, 33] as well as human and rodent Sim homologs which may be involved in the pathogenesis of Down syndrome [34–39]. Whereas HIF-1α is a new member of the bHLH-PAS family, HIF-1β is identical to ARNT. Thus, ARNT is capable of heterodimerizing either with AhR or HIF-1α, followed by transactivation of genes involved in xenobiotic metabolism or adaptation to hypoxia, respectively [40–43]. The HIF-1 complex is exponentially induced over a physiologically relevant range of O₂ tension [44]. The mechanisms by which hypoxia activates HIF-1, however, have only partially been unravelled and are a matter of intense investigations. While, in some experimental settings, hypoxia increases HIF-la which hypoxia activates HIF-1, however, have only partially been unravelled and are a matter of intense investigations.

Materials and Methods

Cloning and sequencing of the mouse HIF-la gene. The mouse HIF-la gene was cloned from a genomic λ phage library (kind gift of U. Müller, Zürich, Switzerland) prepared from DNA which had been isolated from the mouse strain 129Sv-ev-deriv ed embryonic stem cell line AB-1, partially digested with Sau3A1 and ligated into the vector LambdaGEM-11 (Promega). This library was screened by plaque hybridization [52] to a 0.5-kb *HindIII* 5′ terminal fragment from the human HIF-la cDNA-bearing plasmid pBluescriptSK/HIF-1α (2.2-kb) [26] and the cDNA reported by Li et al. [19] is present of an alternative 5′ untranslated region (UTR), which predicts the use of different ATG translation initiation codons [46]. Whereas the 5′ UTR of the mouse HIF-1α cDNA reported by Li et al. [19] is homologous to the previously cloned human cDNA [26], no human HIF-1α cDNA containing the alternative 5′ UTR has so far been reported. In this paper, we have cloned and characterized the mouse *Hifla* gene, including the first exon encoding the alternative 5′ UTR, and show that mouse *Hifla* is expressed as two mRNA isoforms containing two different 5′ UTRs.

Complementary to the HIF-1α cDNA at positions 87–109 [46] (see also Fig. 3), the probe for the 5′ UTR homologous to human HIF-1α [19] was a 270-bp EcoRI–NcoI cDNA fragment that was kindly provided by A. Damert (Bad Nauheim, Germany). Positive λ clones were plaque purified, analyzed by restriction digestion and Southern blotting and subcloned into pBluescript vectors (Stratagene). The *Hifla* gene was sequenced on both strands using a combination of various automated and manual sequencing procedures with fluorescently labeled dyeoxyribonucleotides, fluorescently labeled primers and ['S]dATP incorporation in cycle-sequencing reactions and T7-sequencing reactions, respectively, according to the instructions provided by the manufacturers (Applied Biosystems and Pharmacia).

Mung bean nuclease protection. A radioactively labeled probe was prepared by phosphorylation of the 5′ end of the oligonucleotide mHiFpex (see above) with [γ-32P]ATP (Hartmann) and T4 polynucleotide kinase (Merck) as described elsewhere [53]. Circular, single-stranded DNA was obtained from the plasmid pH13X8-dH using M13KO7 helper phages [52]. This plasmid contained the 1374-bp *XbaI–HindIII* fragment which includes exon 1 and 0.9 kb of upstream sequence (see also Fig. 3). The labeled mHiFpex primer was annealed to single-stranded pH13X8-dH in 10 mM Tris/Cl, pH 8.0, 10 mM MgCl₂ for 15 min at 4°C, and extended by adding 1 mM dNTPs and Klenow fragment of DNA polymerase I (Fermentas) for 30 min at 37°C. Following heat inactivation (5 min at 70°C), the products were cleaved with *BamH I* (Fermentas) and ethanol precipitated. The resulting 523-bp probe was denatured in 30 mM NaOH and the single-stranded probe was separated from the template by alkaline agarose gel electrophoresis as described [54]. This probe (25 kcpm) was co-precipitated with 70 µg total RNA, resuspended in 20 µl 80% formamide, 40 mM Pipes, pH 6.4, 400 mM NaCl, 1 mM EDTA by heating at 70°C for 30 min, and hybridized overnight at 30°C. Following addition of 10× mung bean nuclease buffer (Life Technologies) and 6 µg sonicated and denatured calf thymus DNA (Sigma), the products were digested with 0–80 U mung bean nuclease (Life Technologies) and 6 µg as a final size marker, T7 polymerase sequencing reactions were performed with the mHiFpex primer and pH13X8-dH single-stranded DNA as template according to the instructions of the manufacturer (Pharmacia).

Cell culture. The mouse hepatoma cell line Hepa1 (also termed Hepa1c1c7) was a kind gift of L. Poellinger (Huddinge, Sweden). The mouse fibroblast cell line L929 (American Type Culture Collection [ATCC] CCL-1 NCTC clone 929) was a kind gift of V. O'Donnall (Bern, Switzerland). The human hepatoma cell line Hep3B (ATCC HB-8064) was obtained from ATCC. All cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM, high glucose, Life Technologies) supplemented with 10% heat-inactivated fetal calf serum (Boehringer-Mannheim), 100 U/ml penicillin, 100 µg/ml streptomycin, 1× minimal essential medium non-essential amino acids, 2 mM L-glutamine and 1 mM sodium pyruvate (all purchased from Life Technologies) in a humidified atmosphere containing 5% CO₂ at 37°C. Oxygen tensions in the incubator (Forma Scientific, model 3319) were either 140 mm Hg (20% O₂ by vol., normoxia) or 7 mm Hg (1% O₂ by vol., hypoxia). The human epithelial carcinoma cell line HeLaS3 (ATCC CCL-2.2) was obtained from ATCC and was cultured in suspension in Ham's F-12 medium (Life Technologies).
PCR analysis. Total RNA was isolated from normoxic and hypoxic Hepa1 and L929 cell cultures according to the method described by Chromczynski and Sacchi [55]. For cDNA synthesis, 6 μg RNA was heat denatured (3 min at 70°C) and reverse transcribed in 100 μl 50 mM Tris/Cl, pH 8.3, 60 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, 0.5 mM dNTPs and 1 U/μl RNAsin (Promega), using 5 μg (dT)₁₂₋₁₈ primers (Pharmacia) and 250 U Stratascript reverse transcriptase (RT) (Stratagene). Following incubation for 30 min at 37°C and for 30 min at 42°C, the reaction was stopped by heating to 95°C for 5 min. An aliquot (2 μl) of each cDNA reaction was subjected to PCR amplification using 50 pmol each of the forward primers mHIF-Fex1.1 (5'-TTTCTGGCAGAACGTGTA-3') and mHIF-ex2.5 (5'-GCGCTGGCTGAGTGTC-3'), and the reverse-primer mHIF-FexIII (5'-TAAACCCATGTATTGTTTGTC-3') in 50 μl 1×PCR buffer (Stehelin), 0.2 mM dNTPs and 0.2 U SuperTag DNA polymerase (Stehelin). Following 35 cycles of 94°C for 30 s, 48°C for 30 s and 72°C for 2 min on a Gene Amp System 9600 thermosty-chermo (Perkin Elmer Cetus), the PCR products were analyzed by restriction digestion and Southern blotting.

Southern-blot analysis. Following gel electrophoresis of the PCR products through 1% agarose gels, the DNA was transferred to uncharged Biodyne A membranes (Pall) and cross-linked by ultraviolet irradiation (Stratalinker, Stratagene). The blots were hybridized to a gel isolated 5' UTR probe homologous to the human HIF-1α cDNA [19], which was labeled to a specific radioactivity of 1×10⁸ dpm/μg by the random-primed DNA-labelling method [52], or to the oligonucleotide mHIFpex (Fig. 3) which was 5' end labeled (see above). Hybridization was performed in 6XNaCl/Cit (20XNaCl/Cit is 3 M NaCl, 0.3 M trisodium citrate, pH 7.0), 10XDenhardt's, 0.1% SDS, 1.1 mM Na,P,O₆, 17 mM Na,HPO₄/NaH₂PO₄, pH 7.7, and 200 μg/ml sonicated salmon sperm DNA (Sigma) for 15 h at 65°C for DNA probes and at 60°C for the mHIFpex oligonucleotide. The blots were washed to a final stringency of 65°C in 0.1XNaCl/Cit, 0.2% SDS for DNA probes and of 60°C in 2XNaCl/Cit, 0.2% SDS for the mHIFpex oligonucleotide. Radioactive signals were recorded by phosphorimaging (Molecular Dynamics).

Reporter gene assays. Firefly luciferase reporter-gene constructs were obtained by inserting various fragments of the Hif1a exon 1.1 upstream region into the promoterless luciferase vector pGL3Basic (Promega). A 1-kb PsiI–BstXI fragment (PsiI cuts in the polylinker 5′ to the Xbal site shown in Fig. 3) was first subcloned into the PsiI–EcoRV sites of pBluescript (Stratagene). The resulting plasmid was then digested with HindIII together with either BamHI (partially) or SspI, and the fragments subcloned into BglII–HindIII or SmaI–HindIII digested pGL3Basic, yielding the plasmids pGL1015Luc, pGL499Luc and pGL134Luc, respectively. For analysis of the putative HIF-binding site in the Hif1a promoter, the oligonucleotides mHIF₅ (5′-AACTTGCGTTGCGCTTT-3′) or the mutant mHIF₅mt (5′-AACTTAAAGGGTTGCGCTTT-3′) were annealed to the respective antisense oligonucleotides and inserted into the filled-in BamHI site of the plasmid pGL3Promoter (Promega), which contains the luciferase gene driven by a heterologous simian virus 40 promoter. The copy number and orientation were determined using RVPriem4 (Promega) by T7-polymerase-mediated single-stranded DNA sequencing. Tissue culture cells (1×10⁶ in 350 μl medium without fetal calf serum) were cotransfected with each 25 μg luciferase reporter gene construct and the β-galactosidase expression vector pCMVlacZ (kind gift of S. Kozlov, Zürich, Switzerland) by electroporation at 250 V and 960 μF (Gene Pulser, Bio-Rad). Thereafter, the cells were split in two aliquots and incubated for 24–30 h in 20% or 1% O₂, respectively. After washing twice with 137 mM NaCl, 2.7 mM KCl, 8 mM Na₂HPO₄, 1.5 mM KH₂PO₄, pH 7.4 (NaCl/Pr), the cells were lysed in reporter lysis buffer (Promega) and luciferase and β-galactosidase activities were determined according to the instructions of the manufacturer (Promega) using a Biochrom M1500 luminometer (Lumac) and a DU-62 spectrophotometer (Beckmann), respectively. Differences in the transfection efficiencies and extract preparations were corrected by normalization to the corresponding β-galactosidase activities.

Electrophoretic mobility shift assay (EMSA). Nuclear extracts were prepared as described previously [53]. Briefly, 1×10⁴ cells were washed twice with ice-cold NaCl/P, and once with buffer A (10 mM Tris/Cl, pH 7.8, 1.5 mM MgCl₂, 10 mM KCl), and lysed by 10 strokes of a Dounce homogenizer using a type-B pestle. The nuclei were pelleted and resuspended in buffer C (420 mM KCl, 20 mM Tris/Cl, pH 7.8, 1.5 mM MgCl₂, 20% glycerol) and incubated at 4°C for 30 min with gentle agitation. Immediately before use, buffers A and C were supplemented with 0.5 mM dithiothreitol, 0.4 mM phenylmethylsulfonyl fluoride, 2 μg/ml each of leupeptin, pepstatin and aprotinin, and 1 mM Na₂VO₃ (all obtained from Sigma). The nuclear extract was centrifuged and the supernatant was dialyzed twice against buffer D (20 mM Tris/Cl, pH 7.8, 100 mM KCl, 0.2 mM EDTA, 20% glycerol). Protein concentrations were determined using the Bradford protein assay (Bio-Rad) with bovine serum albumin as standard. For EMSAs, the mHIF₅ and mHIF₅mt oligonucleotides (see above), or an erythropoietin-derived HIF-1-binding oligonucleotide [53] were used as probes. All oligonucleotides were purified on 10% polyacrylamide gels prior to 5′ end-labeling of the sense strand as described above. Radiolabeled sense strands were annealed to a twofold molar excess of unlabeled antisense strands. DNA-protein binding reactions were carried out for 20 min at 4°C in a total volume of 20 μl containing 4–5 μg nuclear extract, 0.1–0.4 μg sonicated, denaturated calf thymus DNA (Sigma) and 1×10⁴ cpm oligonucleotide probe in 10 mM Tris/Cl, pH 7.5, 50 mM KCl, 50 mM NaCl, 1 mM MgCl₂, 1 mM EDTA, 5 mM dithiothreitol and 5% glycerol and run on 4% non-denaturating polyacrylamide gels. Electrophoresis was performed at 200 V in 89 mM Tris, 89 mM boric acid, 5 mM EDTA (TBE buffer) at 4°C and dried gels were autoradiographed.

RESULTS

Isolation and characterization of the mouse Hif1a gene. We previously characterized the mouse cDNA for HIF-1α and found that it was encoded by an evolutionary conserved single-copy gene termed Hif1a [46]. For the molecular analysis of this gene, four rounds of screening of an λ phage library derived from an embryonic stem cell line (AB-1) were performed. In a first round, 1.3×10⁶ λ plaques were screened using as probe a 0.5-kb fragment from the 5′ terminus of the human HIF-1α cDNA [26]. Seven positive clones were obtained and one of them (JH1) was subjected to restriction and sequence analysis. Comparison with the mouse cDNA sequence revealed that JH1 contained Hif1a exons II–VII (Fig. 1). To obtain the 3′ end of Hif1a, a second round of cloning was performed using a probe derived from the 3′ UTR of the HIF-1α cDNA. Following screening of 0.8×10⁶ λ plaques of the same AB-1 library, six positive clones were isolated, one of which (JH25) contained exons VII–XV (Fig. 1). In a third round of cloning, an oligonucleotide termed mHIFpex derived from the alternative 5′ UTR (encoded by exon 1.1) of the HIF-1α cDNA [46] was used as probe, resulting in a single positive clone (JH13). Finally, one clone (JH30) was obtained with a 5′ UTR mouse HIF-1α probe homologous to the human cDNA [19] (encoded by exon 1.2). Inserts of the clones JH1 and JH25 were subcloned and se-
Hybridization and restriction mapping analysis revealed that ex-

region is indicated by black boxes and the 5' and 3' UTRs by open boxes. The bHLH and PAS domains of HIF-1α are indicated. (B) Structure of the mouse HIFα gene. Sequenced regions are indicated by the thick line and non-sequenced regions by the thin line. Filled and open boxes represent coding and non-coding regions, respectively. B1 and B2 mouse repetitive elements are indicated by arrowheads. (C) Location of the λ phage clones used to map and sequence the HIFα gene. Note that the phage clone λH30 overlaps with λH13 and λH7.

<table>
<thead>
<tr>
<th>exon no.</th>
<th>length</th>
<th>start</th>
<th>intron no.</th>
<th>length</th>
<th>start</th>
<th>exon no.</th>
<th>cDNA position</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>152 bp</td>
<td></td>
<td>I</td>
<td>24 kb</td>
<td></td>
<td></td>
<td>TGGAA... exon I.1... -28</td>
</tr>
<tr>
<td>I.2</td>
<td>191 bp</td>
<td></td>
<td>II</td>
<td>1241 bp</td>
<td></td>
<td>I.1</td>
<td>AGTA... exon I.1... 124/125</td>
</tr>
<tr>
<td>I.3</td>
<td>146 bp</td>
<td></td>
<td>II</td>
<td>82 bp</td>
<td></td>
<td>II</td>
<td>TGGAA... exon II... 315/316</td>
</tr>
<tr>
<td>I.4</td>
<td>85 bp</td>
<td></td>
<td>II</td>
<td>2357 bp</td>
<td></td>
<td>II</td>
<td>TGGAA... exon II... 461/462</td>
</tr>
<tr>
<td>I.5</td>
<td>113 bp</td>
<td></td>
<td>II</td>
<td>1534 bp</td>
<td></td>
<td>II</td>
<td>TGGAA... exon II... 546/547</td>
</tr>
<tr>
<td>I.6</td>
<td>203 bp</td>
<td></td>
<td>III</td>
<td>3717 bp</td>
<td></td>
<td>III</td>
<td>TGGAA... exon III... 659/660</td>
</tr>
<tr>
<td>I.7</td>
<td>107 bp</td>
<td></td>
<td>III</td>
<td>1347 bp</td>
<td></td>
<td>III</td>
<td>TGGAA... exon III... 862/863</td>
</tr>
<tr>
<td>I.8</td>
<td>148 bp</td>
<td></td>
<td>III</td>
<td>1727 bp</td>
<td></td>
<td>III</td>
<td>TGGAA... exon III... 969/970</td>
</tr>
<tr>
<td>I.9</td>
<td>221 bp</td>
<td></td>
<td>III</td>
<td>1272 bp</td>
<td></td>
<td>III</td>
<td>TGGAA... exon III... 1117/1118</td>
</tr>
<tr>
<td>I.10</td>
<td>284 bp</td>
<td></td>
<td>IV</td>
<td>594 bp</td>
<td></td>
<td>IV</td>
<td>TGGAA... exon IV... 1338/1339</td>
</tr>
<tr>
<td>I.11</td>
<td>123 bp</td>
<td></td>
<td>IV</td>
<td>905 bp</td>
<td></td>
<td>IV</td>
<td>TGGAA... exon IV... 1622/1623</td>
</tr>
<tr>
<td>I.12</td>
<td>245 bp</td>
<td></td>
<td>IV</td>
<td>108 bp</td>
<td></td>
<td>IV</td>
<td>TGGAA... exon IV... 1745/1746</td>
</tr>
<tr>
<td>I.13</td>
<td>109 bp</td>
<td></td>
<td>V</td>
<td>1694 bp</td>
<td></td>
<td>V</td>
<td>TGGAA... exon V... 2170/2171</td>
</tr>
<tr>
<td>I.14</td>
<td>127 bp</td>
<td></td>
<td>V</td>
<td>515 bp</td>
<td></td>
<td>V</td>
<td>TGGAA... exon V... 2279/2280</td>
</tr>
<tr>
<td>I.15</td>
<td>1340 bp</td>
<td></td>
<td>V</td>
<td>515 bp</td>
<td></td>
<td>V</td>
<td>TGGAA... exon V... 2406/2407</td>
</tr>
</tbody>
</table>

Fig. 2. Intron-exon splice junctions of the mouse HIFα gene. The length of the exons and introns, sequences adjacent to intron-exon boundaries and the positions of the introns on the mouse HIF-1α cDNA sequence (numbering according to [46]) are indicated. The consensus splice donor and acceptor dinucleotides of each intron (GT...AG) are underlined and the polyadenylation signal is double underlined.

sequenced, resulting in a total of 20463 bp which contained exons II-XV and the corresponding intervening sequences (Fig. 1). In addition, 2232 bp of λH13 containing exon I.1 were sequenced. Hybridization and restriction mapping analysis revealed that exons I.1 and I.2 are located approximately 24 kb and 17 kb, respectively, upstream of exon I (Fig. 1).

The HIFα gene is composed of 15 exons separated by 14 introns (Figs 1 and 2). The lengths of the exons vary over 85-1340 bp. The longest, exon XV, contains the TGA stop codon and the 3' UTR of HIF-1α, comprising around one third of the entire transcribed region. The poly(A) addition site is 18 bp downstream of the unique polyadenylation signal. The intron-exon boundaries all conform to the consensus GT and AG splice donor and acceptor dinucleotides [36]. A total of 13 B1 [57] and B2 [58] mouse repetitive elements were identified in the HIFα introns (depicted as arrowheads in Fig. 1). In contrast to the regions flanking exon I.1, no low complexity repetitive elements longer than a few bases were detected.

A comparison with the 3746-bp mouse HIF-1α cDNA that was previously reported [46], revealed a total of 15 nucleotide substitutions; one in the 5' UTR, nine in the coding region, and five in the 3' UTR. Of the nine substitutions in the coding region, seven represent conservative changes and only two predicted amino acid changes. These amino acid changes are Ala116—Thr and Val773—Glu. The cDNA sequence reported by Li et al. [19], derived from the same Hepal cell line as our cDNA, is identical in our cDNA and in the cDNA reported by Li et al. [19] and, therefore, probably represent strain polymorphisms between HIFα in the Hepal cell line (derived from mouse strain C57BL/6) and HIFα in the AB-1.
between Li's mouse HIF-1α cDNA and ours included artifacts of our mouse HIF-la cDNA. Other differences between the clones, however, confirmed our cDNA sequence. The other six differences found in the genomic sequence (including Val773) were identical to the cDNA reported by Li et al. and, hence, might be the result of PCR, cloning and/or sequencing artifacts of our mouse HIF-la cDNA. Other differences between Li's mouse HIF-1α cDNA and ours included a 2232-bp fragment derived from the λ phage clone λH13 contained exon 1.1 as well as 5' and 3' flanking sequences (Fig. 3). Nuclease protection assays were performed to map the 5' end of exon 1.1. Total RNA derived from Hepa1 cells was hybridized to a labeled, single-stranded probe of 523 nucleotides (Fig. 3, from the BamHI site to the mHIFpex oligonucleotide). Excess single-stranded probe as well as protruding ends of the DNA-RNA hybrids were digested with increasing amounts of mung bean nuclease, and the products were separated on a sequencing gel along with sequencing reactions performed with the mHIFpex oligonucleotide as primer (Fig. 4). A single, strong band was repeatedly found, whose intensity decreased with increasing amounts of mung bean nuclease. Multiple, much weaker signals were also observed, but these bands were not digested with mung bean nuclease in a dose-dependent manner and hence probably result from unspecific cleavage. No bands were found in the untreated control lane, indicating that the observed pattern is not due to unspecific probe fragmentation. The unique protected fragment corresponds to the T at position 903 of the sequence (Fig. 3), 2-bp downstream of a putative CA cap signal. In support of this finding, a T located in the preferred region centered 2-bp downstream of the cap signal has been detected in 131 of 303 cases [59]. These data give rise to a length of 152 bp for exon 1.1, 29 bp longer than previously found by the 5' RACE technique [46]. 5' RACE is a modification of the primer-extension analysis of mRNA cap sites and thus provides a complementary method to nuclease protection. The slightly shorter 5' RACE product might be attributed to premature first strand synthesis termination.

An ORF was identified in exon 1.1 which did not contain an ATG translation initiation codon and was not in-frame with the 5' UTR of the predicted gene product derived from exon 1.1. No ATG codon is found at this position in the human HIF-1α mRNA transcripts containing the 5' UTR encoded by exon 1.1 [46]. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46]. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46]. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46]. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46].

Characterization of Hifla exon 1.1. A 2232-bp Xbal fragment derived from the λ phage clone λH13 contained exon 1.1 as well as 5' and 3' flanking sequences (Fig. 3). Nuclease protection assays were performed to map the 5' end of exon 1.1. Total RNA derived from Hepa1 cells was hybridized to a labeled, single-stranded probe of 523 nucleotides (Fig. 3, from the BamHI site to the mHIFpex oligonucleotide). Excess single-stranded probe as well as protruding ends of the DNA-RNA hybrids were digested with increasing amounts of mung bean nuclease, and the products were separated on a sequencing gel along with sequencing reactions performed with the mHIFpex oligonucleotide as primer (Fig. 4). A single, strong band was repeatedly found, whose intensity decreased with increasing amounts of mung bean nuclease. Multiple, much weaker signals were also observed, but these bands were not digested with mung bean nuclease in a dose-dependent manner and hence probably result from unspecific cleavage. No bands were found in the untreated control lane, indicating that the observed pattern is not due to unspecific probe fragmentation. The unique protected fragment corresponds to the T at position 903 of the sequence (Fig. 3), 2-bp downstream of a putative CA cap signal. In support of this finding, a T located in the preferred region centered 2-bp downstream of the cap signal has been detected in 131 of 303 cases [59]. These data give rise to a length of 152 bp for exon 1.1, 29 bp longer than previously found by the 5' RACE technique [46]. 5' RACE is a modification of the primer-extension analysis of mRNA cap sites and thus provides a complementary method to nuclease protection. The slightly shorter 5' RACE product might be attributed to premature first strand synthesis termination.

An ORF was identified in exon 1.1 which did not contain an ATG translation initiation codon and was not in-frame with the 5' UTR of the predicted gene product derived from exon 1.1. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46]. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46]. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46]. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46]. No ATG codon is found at this position in the human HIF-1α cDNA [26] whose translational start site corresponds to the 5' UTR encoded by exon 1.1 [46].
Co-expression of endogenous mouse HIF-1α transcripts which contain 5' regions derived from either exon 1.1 or exon 1.2. To further investigate the expression of the two mouse HIF-1α mRNA isoforms, we established an RT-PCR assay using forward primers which are specific for either exon 1.1 or exon 1.2, and a reverse primer located on exon 111. To confirm the specificity of the PCR, the products were digested with HindIII, which cuts only in exon 111, and visualized by agarose gel electrophoresis and ethidium bromide staining (Fig. 5A). Total RNA was isolated from normoxic (20% O_2) or hypoxic (4 h at 1% O_2) Hepal mouse hepatoma (H) and L929 fibroblast (L) cells. Primer pairs spanning either exons 1.1-111 or exons 1.2-111 were used, and half of the RT-PCR products were digested with HindIII which cuts in exon 111. An ethidium-bromide-stained agarose gel is shown with marker lanes (M) on both sides. The lengths of the RT-PCR products are indicated. cDNA, control PCR lacking template cDNA. (B) Southern-blot analysis of the RT-PCR products using an exon 1.1-specific hybridization probe. (C) Southern-blot analysis of the RT-PCR products using an exon 1.2-specific hybridization probe.
Structural analysis of the flanking regions of exon 1.1. 0.9 kb of the 5' flanking region and 1.2 kb of the 3' flanking region (intron 1) of exon 1.1 were sequenced (Fig. 3). A computer-assisted search using the consensus DNA-recognition-site-containing tfsites.dat database of the GCG program package [61] revealed a number of perfect matches to consensus sites including a Sp1 site, a TATA box and an AP-1 site (Fig. 3). The TATA box is located 300 bp upstream of the transcription initiation site and hence does not conform to the typical location of TATA boxes which are preferably found 20–36 bp upstream of the transcriptional start site [59]. However, a non-canonical TATA box (TATTAT) was located in the expected position 23 bp upstream of the beginning of exon 1.1. Interestingly, a putative HIF-1-binding site (TACGTGGT) was identified 82 bp upstream of the exon 1.1 start site. This site perfectly matched the consensus HIF-1-binding site (TACGTGGT) [18]. Apart from this putative HIF-1 site in the Hifla exon 1.1 promoter, only one additional match to the HIF-1 consensus binding site was detected in the 20.4-kb sequenced part of the Hifla gene; the motif GACGTGCT was found in exon VI, corresponding to nucleotide positions 740–747 in the mouse HIF-1α cDNA sequence [46]. However, neither of these two specific 8-bp HIF-1 motifs have so far been found in other genes.

In contrast to the introns 2–14, no B1 and B2 mouse repetitive elements could be identified in the sequences flanking exon 1.1. In contrast, a region of 212 bp sharing 74% similarity with a LINE-1 repetitive element (L1MdA11) [62], which has not been found in introns 2–14, was localized 364–152 bp upstream of the transcription initiation site of exon 1.1 (Fig. 3). Intriguingly, this element was 67% similar to a 146-bp stretch in the 3' UTR of the AhR gene [63]. The biological significance of this finding, however, awaits further investigations. The Hifla exon 1.1 flanking regions were enriched in low complexity repetitive elements such as (A)n, (T)n, (GT)n, (GA)n, and (ATCN)n repeats (underlined in Fig. 3). Interestingly, the (ATCN)n repeat was located within an ORF (boldface in Fig. 3) which potentially encodes a 14.1-kDa peptide. These repeats are concentrated in the sex-determining region of the mouse Y chromosome and have been proposed to encode primordial proteins [64, 65]. mRNA containing such 4-bp repeats (also termed GATA repeats for the complementary strand) is sometimes transcribed [64, 65], but whether the (ATCN)n element in the Hifla exon 1.1 promoter is also transcribed is unknown.

Functional analysis of the 5' flanking region of exon 1.1. To examine the promoter activity of the 5' flanking region of exon 1.1, several cell lines were transfected with luciferase expression constructs that contained exon 1.1 flanking sequences of various length. These constructs were transiently expressed in L929, Hep3B and HeLaS3 cells cultured under normoxic (20% O2) or hypoxic (1% O2) conditions for 24–30 h. A co-transfected β-galactosidase expression vector served as internal control for transfection efficiency and extract preparation. All values were normalized to the normoxic luciferase expression plasmids containing various fragments of the Hifla expression vector served as internal control for transfection efficiency and extract preparation. The ratios between luciferase and β-galactosidase activities were used to correct for differences in transfection efficiency and extract preparation. The ratios of luciferase and β-galactosidase activities were normalized to the normoxic value obtained with the empty vector pGL3Basic which was arbitrarily defined as 1. Means ± SD of three independent experiments are shown.

Fig. 6. Reporter gene expression driven by the Hifla exon 1.1 promoter. Luciferase reporter gene activity following transient transfection and hypoxic induction of L929, Hep3B and HeLaS3 cells with luciferase expression plasmids containing various fragments of the Hifla exon 1.1 5' flanking region as indicated. A co-transfected β-galactosidase expression vector served as internal control for transfection efficiency and extract preparation. All values were normalized to the normoxic luciferase activities obtained with the empty vector pGL3Basic which were arbitrarily defined as 1. Means ± SD of three independent experiments are shown.

product, a weaker band of higher molecular mass appeared with both primer pairs. In principle, a fraction of the RT-PCR products would be expected to be longer if they result from a differentially spliced common precursor mRNA and thus contains both possible first exons. However, such a longer RT-PCR product could occur only in one of the two RT-PCR products and, even more importantly, the hybridization probes would cross-hybridize with such a product. Since this was not the case, it was concluded that the larger hybridizing RT-PCR products represent either PCR artifacts or that an additional, differentially spliced exon is present downstream of exons 1.1 and 1.2. These results suggest that mouse HIF-1α mRNA is co-expressed as two transcripts containing different 5' UTRs and ATG translation initiation codons, and that Hifla gene expression is driven by two different promoters which do not seem to be differentially regulated in hepatoma cells compared to fibroblast cells or during hypoxia compared to normoxia.
expression. The twofold increase observed in hypoxic Hep3B cells, but not in the other cell lines, was also detected with the empty vector alone and hence cannot be attributed to the function of the Hifla exon 1.1 promoter.

The putative HIF-1-binding site in the Hifla exon 1.1 5' flanking region is not functional. One possible explanation for the failure of the exon 1.1 promoter to hypoxically induce reporter gene expression despite the presence of a putative HIF-1-binding site might be the presence of negative regulatory sequences on the same plasmid construct. Therefore, an 18-bp oligonucleotide was analysed, encompassing this putative HIF-1 site, which was inserted in one or three copies downstream of the luciferase gene driven by a heterologous simian virus 40 promoter. As a control, analogous plasmids were constructed containing a mutated version of these oligonucleotides (see Materials and Methods). In previous experiments, a similar approach using three copies of the HIF-1-binding site derived from the erythropoietin gene 3' flanking region [43, 53] or a single copy of two tandemly repeated HIF-1-binding sites derived from the transferrin gene (Rolfs, A., Kvietikova, I., Gassmann, M. and Wenger, R. H., unpublished results), resulted in a marked induction of reporter gene expression after hypoxic exposure. In contrast (Fig. 7 A), the Hifla-derived putative HIF-1-binding site failed to convey hypoxic induction to reporter gene expression. In parallel experiments, the HIF-1-binding sites derived from the transferrin gene enhanced reporter gene expression 9.3-fold, indicating that the cells were hypoxically stimulated (data not shown).

To answer the question of whether the HIF-1 complex is capable of binding to the Hifla-derived putative HIF-1 site, EMSAs were performed using nuclear extracts derived from normoxic and hypoxic Hep3B cells. Whereas the HIF-1 DNA-binding activity in these extracts was readily detectable with an erythropoietin-derived HIF-1 oligonucleotide probe, almost no binding to the Hifla-derived probe (mHIF5') was observed (Fig. 7B). In contrast, the constitutive DNA-binding activity, previously attributed to ATF-1/CREB-1 function [53], remained unaffected with the Hifla-derived wild-type probe and disappeared only with the mutant oligonucleotide mHIF5'mt (Fig. 7B). Similar results were obtained with the putative HIF-1-binding site located in exon V1 (data not shown). These results demonstrate that the putative HIF-1-binding site in the exon 1.1 promoter is not functional.

DISCUSSION

Prior to the present report, the structural organization of genes encoding mammalian members of the bHLH-PAS family was only known for the mouse Ahr gene (Ahr) [66]. The architecture of the Hifla and Ahr genes shares some similarities; both genes contain relatively long 5' introns, the bHLH and PAS domains are encoded by different exons, and the last exons, by far the longest in both genes, code for the entire 3' UTRs. In a survey of 699 vertebrate mRNAs, nearly 25% of the examined mRNAs have an intron between the promoter and the ORF [67, 68]. In a survey of 699 vertebrate mRNAs, nearly 25% of the examined mRNAs have an intron between the promoter and the ORF [60]. This finding has two important putative consequences: (a) the first intron might bear transcriptional regulatory elements; (b) the promoter may be switched in response to tissue-specific signals, thereby replacing a weak by a strong promoter and/or exchanging an inef-
ficiently translated 5' UTR for one that appears more favourable [60].

In this work we have shown that 0.9 kb of Hifla exon I.1
5' flanking sequences display only moderate promoter activity, probably because the high density of repetitive elements present
in this region reduces the number of possible transcription-
ctor-binding sites. Thus, additional cis-regulatory elements
might be required for efficient transcriptional activation. In sup-
port of this hypothesis, an exogenous simian virus 40 enhancer
might be required for efficient transcriptional activation. In sup-
pressor-binding sites. Thus, additional cis-regulatory elements
in the expression levels can nevertheless be observed [40, 45–47]. Exon 1.1-specific and 1.2-
specific probes will be required to examine the possibility of
differential tissue-specific, as well as developmental and condi-
tional, expression of the two different HIF-1α mRNA isoforms.
Assuming that this is the case, it will be interesting to identify
the responsible regulatory elements which might be located in
the 5' flanking region as well as in the first intron.

With regard to our previous finding that HIF-1α is not hyp-
oxically regulated at the mRNA level [40, 46, 47] while HIF-1α
protein content is drastically increased [26, 41, 44], it seems
likely that regulation of HIF-1α expression takes place at the
transcriptional and/or post-transcriptional level(s). Indeed, a recent
report suggested that hypoxia increases the protein stability of
HIF-1α [48]. Moreover, the presence of two different 5' UTRs in
the HIF-1α mRNA population offers the possibility that HIF-1α
expression is dependent on the efficiency with which the two
mRNA species are translated. Interestingly, while the exon-I.1-
derived 5' UTR contains a moderate G+C fraction (49%), the
exon-I.2-derived 5' UTR is G+C-rich (73%) and displays com-
parable CpG and GpC dinucleotide frequencies. It therefore ful-
fills the criteria of CpG islands, known to be associated with
constitutively active promoters of housekeeping genes often
overlapping with the 5' UTRs [69]. Moreover, G+C-rich 5' UTRs
are often poorly translated [60] and might be implicated in
post-transcriptional regulation [69]. Therefore, it is possible
that the translation rate of mouse HIF-1α is dependent on the
ratio between the two mRNA isoforms and, hence, on the rela-
tive activity of the two Hifla promoters. The functional activity
of HIF-1α might also be altered due to the lack of the 12 N-
terminal amino acids in the exon-I.1-derived isoform.

One intriguing feature of the Hifla exon I.1 promoter is the
presence of a putative HIF-1-binding site 82 bp upstream of the
transcription initiation site. In addition, a putative AP-1 site is
located 28 bp downstream of the HIF-1 site. This configuration
is reminiscent of the VEGF promoter where a HIF-1-binding
site has been structurally and functionally identified approxi-
mately 1 kb upstream of the VEGF transcriptional start site [15,
16, 18]. Interestingly, an AP-1 site is also located 30 bp down-
stream of the VEGF HIF-1 site, a configuration which is con-
served between human, rat and mouse VEGF promoters. How-
ever, whereas this fragment conveys oxygen-regulated expres-
sion to a reporter gene, the Hifla-derived putative HIF-1-bind-
ing site is not hypoxia responsive. This might be explained in
part by the marked reduction in HIF-1 DNA binding to this site,
probably due to a mismatch at the last position of the 8-bp Hifla
putative HIF-1 site compared to the VEGF HIF-1 site. This posi-
tion, however, still conforms to the 8-bp tentative consensus
HIF-1 site [18]. In addition, a CACAG element located 5 bp
downstream of the HIF-1 site in the erythropoietin [14] and
VEGF [15, 16, 18] genes, which is absolutely required for full
hypoxic enhancer activity, is absent in the Hifla gene. Together,
these two observations provide an explanation for the lack of
oxygen-responsiveness of the Hifla exon I.1 promoter despite
the presence of a HIF-1 consensus binding site.

It will be interesting to determine whether an exon I.1 homo-
log is also expressed in human tissues, and, following cloning,
to structurally and functionally analyze the mouse and human
promoters of exon I.2. Sequence comparisons between the two
species will help to identify conserved regulatory elements and
will provide further information on the mechanisms of constitu-
tive, tissue-specific and isoform-specific regulation of HIF-1α
mRNA expression. Even more importantly, since it is now clear
that HIF-1α is expressed as two mRNA isoforms in the mouse,
it will be insightful to examine the possibility of differential,
isoform-specific, post-transcriptional mechanisms of hypoxic
HIF-1α activation.

This work was supported by the Swiss National Science
Foundation (grant 31–47111.96), the Julius Klaus-Stiftung and
the Olga Meyerfisch-Stiftung. R. H. W. is a recipient of the Sondermassnahmen des
Bundes zur Förderung des akademischen Nachwuchses. We are grateful
to G. L. Semenza and N. V. Iyer for partially sequencing the Hifla gene
(positions 78–5472); A. Damert, V. O'Donnell, S. Kozlov, U. Müller
and L. Poellinger for the gifts of material, J. Silke and A. Gürlich for
critically reading the manuscript, R. Städe1 for technical help, C. Gasser
for the artwork and C. Bauer for support.

REFERENCES

iol. 101, 1–10.
to hypoxia by mammalian cells, Redox Report 2, 89–96.
adaptation to hypoxia, Physiol. Rev. 76, 839–885.
5. Shewiki, D., Itin, A., Soffer, D. & Keshet, E. (1992) Vascular endo-
thelial growth factor induced by hypoxia may mediate hypoxia-
initiated angiogenesis, Nature 359, 843–845.
Stabilization of vascular endothelial growth factor mRNA by hyp-
oxia and hypoglycemia and coregulation with other ischemia-
7. Ebert, B. L., Firth, J. D. & Ratcliffe, P. J. (1995) Hypoxia and mito-
chondrial inhibitors regulate expression of glucose transporter-1
via distinct cis-acting sequences, J. Biol. Chem. 270, 29083–
29089.
8. Ebert, B. L., Gleadle, J. M., O'Rourke, J. F., Bartlett, S. M., Poulton,
involved in energy metabolism by hypoxia: similarities with the
Transcriptional regulation of genes encoding glycoytic enzymes
by hypoxia-inducible factor 1, J. Biol. Chem. 269, 23757–
23763.
10. Firth, J. D., Ebert, B. L., Pugh, C. W. & Ratcliffe, P. J. (1994)
Oxygen-regulated control elements in the phosphoglycerate kine-
rase 1 and lactate dehydrogenase A genes: similarities with the
yrthropoietin 3' enhancer, Proc. Natl Acad. Sci. USA 91, 6496–
6500.
of lactate dehydrogenase A. Interaction between hypoxia-induc-
able factor 1 and cAMP response elements, J. Biol. Chem. 270,
21021–21027.
12. Semenza, G. L., Jiang, B.-H., Leung, S. W., Passantino, R., Con-
elements in the aldolase A, enolase 1, and lactate dehydrogenase
A gene promoters contain essential binding sites for hypoxia-induc-
able factor 1, J. Biol. Chem. 271, 32529–32537.
able factor 1. Molecular mechanisms of oxygen homeostasis,
Evidence for a widespread oxygen-sensing mechanism, by a cis-acting element which binds hypoxia-inducible factor 1.

