Header

UZH-Logo

Maintenance Infos

Spatial variation in transient water table responses: differences between an upper and lower hillslope zone


Haught, D R W; van Meerveld, H J (2011). Spatial variation in transient water table responses: differences between an upper and lower hillslope zone. Hydrological Processes, 25(25):3866-3877.

Abstract

To better understand storage-runoff dynamics, transient groundwater responses were examined in one of the steep watersheds in British Columbia’s coastal mountains. Streamflow and piezometric data were collected for 1 year to determine the spatial and temporal relations between transient groundwater levels and discharge. Correlations between piezometer responses and lag-time analysis were used to identify and better understand runoff generation mechanisms in this watershed. Results showed a large spatial and temporal variation in transient water table dynamics and indicated that two distinct zones existed: a lower hillslope zone and an upslope zone. Each zone was characterized by very different water table responses. The upper hillslope was disconnected from the stream for the majority of time, suggesting that during most events, it does not directly contribute to streamflow. Piezometers in the lower hillslope zone showed hydrologically limited responses, suggesting rapid subsurface flow, likely through the many macropores and soil pipes. The lag time between peak streamflow and peak groundwater level decreased with increasing antecedent moisture conditions and was more variable for piezometers further away from the stream than for piezometers close to the stream. The study results indicate that a single storage-runoff model is not appropriate for this steep watershed and that a two- or three-compartment model would be more suitable.

Abstract

To better understand storage-runoff dynamics, transient groundwater responses were examined in one of the steep watersheds in British Columbia’s coastal mountains. Streamflow and piezometric data were collected for 1 year to determine the spatial and temporal relations between transient groundwater levels and discharge. Correlations between piezometer responses and lag-time analysis were used to identify and better understand runoff generation mechanisms in this watershed. Results showed a large spatial and temporal variation in transient water table dynamics and indicated that two distinct zones existed: a lower hillslope zone and an upslope zone. Each zone was characterized by very different water table responses. The upper hillslope was disconnected from the stream for the majority of time, suggesting that during most events, it does not directly contribute to streamflow. Piezometers in the lower hillslope zone showed hydrologically limited responses, suggesting rapid subsurface flow, likely through the many macropores and soil pipes. The lag time between peak streamflow and peak groundwater level decreased with increasing antecedent moisture conditions and was more variable for piezometers further away from the stream than for piezometers close to the stream. The study results indicate that a single storage-runoff model is not appropriate for this steep watershed and that a two- or three-compartment model would be more suitable.

Statistics

Citations

26 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 23 Apr 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2011
Deposited On:23 Apr 2015 13:10
Last Modified:05 Apr 2016 19:13
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0885-6087
Additional Information:Special Issue: Measurements and modelling of storage dynamics across scales
Publisher DOI:https://doi.org/10.1002/hyp.8354

Download