Header

UZH-Logo

Maintenance Infos

Future Image Acquisition Trends for PET/MRI


Boss, Andreas; Weiger, Markus; Wiesinger, Florian (2015). Future Image Acquisition Trends for PET/MRI. Seminars in Nuclear Medicine, 45(3):201-211.

Abstract

Hybrid PET/MRI scanners have become commercially available in the past years but are not yet widely distributed. The combination of a state-of-the-art PET with a state-of-the-art MRI scanner provides numerous potential advantages compared with the established PET/CT hybrid systems, namely, increased soft tissue contrast; functional information from MRI such as diffusion, perfusion, and blood oxygenation level-dependent techniques; true multiplanar data acquisition; and reduced radiation exposure. On the contrary, current PET/MRI technology is hampered by several shortcomings compared with PET/CT, the most important issues being how to use MR data for PET attenuation correction and the low sensitivity of MRI for small-scale pulmonary pathologies compared with high-resolution CT. Moreover, the optimal choice for hybrid PET/MRI acquisition protocols needs to be defined providing the highest possible degree of sensitivity and specificity within the constraints of the available measurement time. A multitude of new acquisition strategies of PET and MRI not only offer to overcome current obstacles of hybrid PET/MRI but also provide deeper insights into the pathophysiology of oncological, inflammatory, or degenerative diseases from the combination of molecular and functional imaging techniques.

Abstract

Hybrid PET/MRI scanners have become commercially available in the past years but are not yet widely distributed. The combination of a state-of-the-art PET with a state-of-the-art MRI scanner provides numerous potential advantages compared with the established PET/CT hybrid systems, namely, increased soft tissue contrast; functional information from MRI such as diffusion, perfusion, and blood oxygenation level-dependent techniques; true multiplanar data acquisition; and reduced radiation exposure. On the contrary, current PET/MRI technology is hampered by several shortcomings compared with PET/CT, the most important issues being how to use MR data for PET attenuation correction and the low sensitivity of MRI for small-scale pulmonary pathologies compared with high-resolution CT. Moreover, the optimal choice for hybrid PET/MRI acquisition protocols needs to be defined providing the highest possible degree of sensitivity and specificity within the constraints of the available measurement time. A multitude of new acquisition strategies of PET and MRI not only offer to overcome current obstacles of hybrid PET/MRI but also provide deeper insights into the pathophysiology of oncological, inflammatory, or degenerative diseases from the combination of molecular and functional imaging techniques.

Statistics

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2015
Deposited On:29 Apr 2015 14:16
Last Modified:05 Apr 2016 19:14
Publisher:Elsevier
ISSN:0001-2998
Publisher DOI:https://doi.org/10.1053/j.semnuclmed.2014.12.002
PubMed ID:25841275

Download

Full text not available from this repository.
View at publisher