Header

UZH-Logo

Maintenance Infos

Metapopulation Dynamics on Ephemeral Patches


Reigada, Carolina; Schreiber, Sebastian J; Altermatt, Florian; Holyoak, Marcel (2015). Metapopulation Dynamics on Ephemeral Patches. The American Naturalist, 185(2):183-195.

Abstract

A challenge for conservation management is to understand how population and habitat dynamics interact to affect species persistence. In real landscapes, timing and duration of disturbances can vary, and species' responses to habitat changes will depend on how timing of dispersal and reproduction events relate to the landscape temporal structure. For instance, increasing disturbance frequency may promote extinction of species that are unable to appropriately time their reproduction in an ever-changing habitat and favor species that are able to track habitat changes. We developed a mathematical model to compare the effects of pulsed dispersal, initiated by shifts in habitat quality, with temporally continuous dispersal. We tested the effects of habitat (and population) turnover rates on metapopulation establishment, persistence, and long-term patch occupancy. Pulsed dispersal reduced patch occupancy and metapopulation longevity when habitat patches are relatively permanent. In such cases, demographic extinction was the primary form of local extinction. Conversely, when habitat patches are short-lived and new ones are frequently formed, pulsed dispersal promoted rapid colonization, increased occupancy, and prolonged metapopulation persistence. Our results show that species responsiveness to habitat disturbance is critical to metapopulation persistence, having profound implications for the species likely to persist in landscapes with altered disturbance regimes.

Abstract

A challenge for conservation management is to understand how population and habitat dynamics interact to affect species persistence. In real landscapes, timing and duration of disturbances can vary, and species' responses to habitat changes will depend on how timing of dispersal and reproduction events relate to the landscape temporal structure. For instance, increasing disturbance frequency may promote extinction of species that are unable to appropriately time their reproduction in an ever-changing habitat and favor species that are able to track habitat changes. We developed a mathematical model to compare the effects of pulsed dispersal, initiated by shifts in habitat quality, with temporally continuous dispersal. We tested the effects of habitat (and population) turnover rates on metapopulation establishment, persistence, and long-term patch occupancy. Pulsed dispersal reduced patch occupancy and metapopulation longevity when habitat patches are relatively permanent. In such cases, demographic extinction was the primary form of local extinction. Conversely, when habitat patches are short-lived and new ones are frequently formed, pulsed dispersal promoted rapid colonization, increased occupancy, and prolonged metapopulation persistence. Our results show that species responsiveness to habitat disturbance is critical to metapopulation persistence, having profound implications for the species likely to persist in landscapes with altered disturbance regimes.

Statistics

Citations

Dimensions.ai Metrics
12 citations in Web of Science®
12 citations in Scopus®
12 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

27 downloads since deposited on 30 Apr 2015
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2015
Deposited On:30 Apr 2015 06:41
Last Modified:14 Feb 2018 09:06
Publisher:University of Chicago Press
ISSN:0003-0147
Additional Information:©2015 ITHAKA
OA Status:Green
Publisher DOI:https://doi.org/10.1086/679502

Download

Download PDF  'Metapopulation Dynamics on Ephemeral Patches'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 4MB
View at publisher