Header

UZH-Logo

Maintenance Infos

Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high fat-fed mice


Wueest, Stephan; Rapold, R A; Rytka, J M; Schoenle, E J; Konrad, Daniel (2009). Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high fat-fed mice. Diabetologia, 52(3):541-546.

Abstract

AIMS/HYPOTHESIS: Adipocytes in obesity are characterised by increased cell size and insulin resistance compared with adipocytes isolated from lean patients. However, it is not clear at present whether hypertrophy actually does drive adipocyte insulin resistance. Thus, the aim of the present study was to metabolically characterise small and large adipocytes isolated from epididymal fat pads of mice fed a high-fat diet (HFD).
METHODS: C57BL/6J mice were fed normal chow or HFD for 8 weeks. Adipocytes from epididymal fat pads were isolated by collagenase digestion and, in HFD-fed mice, separated into two fractions according to their size by filtration through a nylon mesh. Viability was assessed by lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium assays. Basal and insulin-stimulated D-[U-(14)C]glucose incorporation and lipolysis were measured. Protein levels and mRNA expression were determined by western blot and real-time RT-PCR, respectively.
RESULTS: Insulin-stimulated D-[U-(14)C]glucose incorporation into adipocytes isolated from HFD-fed mice was reduced by 50% compared with adipocytes from chow-fed mice. However, it was similar between small (average diameter 60.9 +/- 3.1 microm) and large (average diameter 83.0 +/- 6.6 microm) adipocytes. Similarly, insulin-stimulated phosphorylation of protein kinase B and AS160 were reduced to the same extent in small and large adipocytes isolated from HFD-mice. In addition, insulin failed to inhibit lipolysis in both adipocyte fractions, whereas it decreased lipolysis by 30% in adipocytes of chow-fed mice. In contrast, large and small adipocytes differed in basal lipolysis rate, which was twofold higher in the larger cells. The latter finding was associated with higher mRNA expression levels of Atgl (also known as Pnpla2) and Hsl (also known as Lipe) in larger adipocytes. Viability was not different between small and large adipocytes.
CONCLUSIONS/INTERPRETATION: Rate of basal lipolysis but not insulin responsiveness is different between small and large adipocytes isolated from epididymal fat pads of HFD-fed mice.

Abstract

AIMS/HYPOTHESIS: Adipocytes in obesity are characterised by increased cell size and insulin resistance compared with adipocytes isolated from lean patients. However, it is not clear at present whether hypertrophy actually does drive adipocyte insulin resistance. Thus, the aim of the present study was to metabolically characterise small and large adipocytes isolated from epididymal fat pads of mice fed a high-fat diet (HFD).
METHODS: C57BL/6J mice were fed normal chow or HFD for 8 weeks. Adipocytes from epididymal fat pads were isolated by collagenase digestion and, in HFD-fed mice, separated into two fractions according to their size by filtration through a nylon mesh. Viability was assessed by lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium assays. Basal and insulin-stimulated D-[U-(14)C]glucose incorporation and lipolysis were measured. Protein levels and mRNA expression were determined by western blot and real-time RT-PCR, respectively.
RESULTS: Insulin-stimulated D-[U-(14)C]glucose incorporation into adipocytes isolated from HFD-fed mice was reduced by 50% compared with adipocytes from chow-fed mice. However, it was similar between small (average diameter 60.9 +/- 3.1 microm) and large (average diameter 83.0 +/- 6.6 microm) adipocytes. Similarly, insulin-stimulated phosphorylation of protein kinase B and AS160 were reduced to the same extent in small and large adipocytes isolated from HFD-mice. In addition, insulin failed to inhibit lipolysis in both adipocyte fractions, whereas it decreased lipolysis by 30% in adipocytes of chow-fed mice. In contrast, large and small adipocytes differed in basal lipolysis rate, which was twofold higher in the larger cells. The latter finding was associated with higher mRNA expression levels of Atgl (also known as Pnpla2) and Hsl (also known as Lipe) in larger adipocytes. Viability was not different between small and large adipocytes.
CONCLUSIONS/INTERPRETATION: Rate of basal lipolysis but not insulin responsiveness is different between small and large adipocytes isolated from epididymal fat pads of HFD-fed mice.

Statistics

Citations

39 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 22 May 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:22 May 2015 15:21
Last Modified:05 Apr 2016 19:15
Publisher:Springer
ISSN:0012-186X
Publisher DOI:https://doi.org/10.1007/s00125-008-1223-5
PubMed ID:19048227

Download