Header

UZH-Logo

Maintenance Infos

An example of complex modelling in dentistry using Markov chain Monte Carlo (MCMC) simulation


Helfenstein, Ulrich; Menghini, Giorgio; Steiner, Marcel; Murati, Francesca (2002). An example of complex modelling in dentistry using Markov chain Monte Carlo (MCMC) simulation. Community Dental Health, 19(3):152-160.

Abstract

BACKGROUND In the usual regression setting one regression line is computed for a whole data set. In a more complex situation, each person may be observed for example at several points in time and thus a regression line might be calculated for each person. Additional complexities, such as various forms of errors in covariables may make a straightforward statistical evaluation difficult or even impossible. OBJECTIVE AND METHOD During recent years methods have been developed allowing convenient analysis of problems where the data and the corresponding models show these and many other forms of complexity. The methodology makes use of a Bayesian approach and Markov chain Monte Carlo (MCMC) simulations. The methods allow the construction of increasingly elaborate models by building them up from local sub-models. The essential structure of the models can be represented visually by directed acyclic graphs (DAG). This attractive property allows communication and discussion of the essential structure and the substantial meaning of a complex model without needing algebra. EXAMPLE After presentation of the statistical methods an example from dentistry is presented in order to demonstrate their application and use. The dataset of the example had a complex structure; each of a set of children was followed up over several years. The number of new fillings in permanent teeth had been recorded at several ages. The dependent variables were markedly different from the normal distribution and could not be transformed to normality. In addition, explanatory variables were assumed to be measured with different forms of error. Illustration of how the corresponding models can be estimated conveniently via MCMC simulation, in particular, 'Gibbs sampling', using the freely available software BUGS is presented. In addition, how the measurement error may influence the estimates of the corresponding coefficients is explored. It is demonstrated that the effect of the independent variable on the dependent variable may be markedly underestimated if the measurement error is not taken into account ('regression dilution bias'). CONCLUSION Markov chain Monte Carlo methods may be of great value to dentists in allowing analysis of data sets which exhibit a wide range of different forms of complexity.

Abstract

BACKGROUND In the usual regression setting one regression line is computed for a whole data set. In a more complex situation, each person may be observed for example at several points in time and thus a regression line might be calculated for each person. Additional complexities, such as various forms of errors in covariables may make a straightforward statistical evaluation difficult or even impossible. OBJECTIVE AND METHOD During recent years methods have been developed allowing convenient analysis of problems where the data and the corresponding models show these and many other forms of complexity. The methodology makes use of a Bayesian approach and Markov chain Monte Carlo (MCMC) simulations. The methods allow the construction of increasingly elaborate models by building them up from local sub-models. The essential structure of the models can be represented visually by directed acyclic graphs (DAG). This attractive property allows communication and discussion of the essential structure and the substantial meaning of a complex model without needing algebra. EXAMPLE After presentation of the statistical methods an example from dentistry is presented in order to demonstrate their application and use. The dataset of the example had a complex structure; each of a set of children was followed up over several years. The number of new fillings in permanent teeth had been recorded at several ages. The dependent variables were markedly different from the normal distribution and could not be transformed to normality. In addition, explanatory variables were assumed to be measured with different forms of error. Illustration of how the corresponding models can be estimated conveniently via MCMC simulation, in particular, 'Gibbs sampling', using the freely available software BUGS is presented. In addition, how the measurement error may influence the estimates of the corresponding coefficients is explored. It is demonstrated that the effect of the independent variable on the dependent variable may be markedly underestimated if the measurement error is not taken into account ('regression dilution bias'). CONCLUSION Markov chain Monte Carlo methods may be of great value to dentists in allowing analysis of data sets which exhibit a wide range of different forms of complexity.

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:September 2002
Deposited On:21 May 2015 09:04
Last Modified:05 Apr 2016 19:15
Publisher:FDI World Dental Press
ISSN:0265-539X
PubMed ID:12269461

Download

Full text not available from this repository.

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations