Header

UZH-Logo

Maintenance Infos

Box-Jenkins modelling in medical research


Helfenstein, Ulrich (1996). Box-Jenkins modelling in medical research. Statistical Methods in Medical Research, 5(1):3-22.

Abstract

Notifications of diseases, entries in a hospital, injuries due to accidents, etc., are frequently collected in fixed equally spaced intervals. Such observations are likely to be dependent. In environmental medicine, where series such as daily concentrations of pollutants are collected and analysed, it is evident that dependence of consecutive measurements may be important. A high concentration of a pollutant today has a certain 'inertia', i.e. a tendency to be high tomorrow as well. Dependence of consecutive observations may be equally important when data such as blood glucose are recorded within a single patient. ARIMA models (autoregressive integrated moving average models, Box-Jenkins models), which allow the stochastic dependence of consecutive data to be modelled, have become well established in such fields as economics. This article reviews basic concepts of Box-Jenkins modelling. The methods are illustrated by applications. In particular, the following topics are presented: the ARIMA model, transfer function models (assessment of relations between time series) and intervention analysis (assessment of changes of time series).

Abstract

Notifications of diseases, entries in a hospital, injuries due to accidents, etc., are frequently collected in fixed equally spaced intervals. Such observations are likely to be dependent. In environmental medicine, where series such as daily concentrations of pollutants are collected and analysed, it is evident that dependence of consecutive measurements may be important. A high concentration of a pollutant today has a certain 'inertia', i.e. a tendency to be high tomorrow as well. Dependence of consecutive observations may be equally important when data such as blood glucose are recorded within a single patient. ARIMA models (autoregressive integrated moving average models, Box-Jenkins models), which allow the stochastic dependence of consecutive data to be modelled, have become well established in such fields as economics. This article reviews basic concepts of Box-Jenkins modelling. The methods are illustrated by applications. In particular, the following topics are presented: the ARIMA model, transfer function models (assessment of relations between time series) and intervention analysis (assessment of changes of time series).

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:March 1996
Deposited On:21 May 2015 13:56
Last Modified:05 Apr 2016 19:15
Publisher:Sage Publications Ltd.
ISSN:0962-2802
PubMed ID:8743076

Download

Full text not available from this repository.

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations