Header

UZH-Logo

Maintenance Infos

From bit to it: How a complex metabolic network transforms information into living matter


Wagner, A (2007). From bit to it: How a complex metabolic network transforms information into living matter. BMC Systems Biology, 1:33.

Abstract

Organisms live and die by the amount of information they acquire about their environment. The systems analysis of complex metabolic networks allows us to ask how such information translates into fitness. A metabolic network transforms nutrients into biomass. The better it uses information on available nutrient availability, the faster it will allow a cell to divide. I here use metabolic flux balance analysis to show that the accuracy I (in bits) with which a yeast cell can sense a limiting nutrient's availability relates logarithmically to fitness as indicated by biomass yield and cell division rate. For microbes like yeast, natural selection can resolve fitness differences of genetic variants smaller than 10-6, meaning that cells would need to estimate nutrient concentrations to very high accuracy (greater than 22 bits) to ensure optimal growth. I argue that such accuracies are not achievable in practice. Natural selection may thus face fundamental limitations in maximizing the information processing capacity of cells. The analysis of metabolic networks opens a door to understanding cellular biology from a quantitative, information-theoretic perspective.

Abstract

Organisms live and die by the amount of information they acquire about their environment. The systems analysis of complex metabolic networks allows us to ask how such information translates into fitness. A metabolic network transforms nutrients into biomass. The better it uses information on available nutrient availability, the faster it will allow a cell to divide. I here use metabolic flux balance analysis to show that the accuracy I (in bits) with which a yeast cell can sense a limiting nutrient's availability relates logarithmically to fitness as indicated by biomass yield and cell division rate. For microbes like yeast, natural selection can resolve fitness differences of genetic variants smaller than 10-6, meaning that cells would need to estimate nutrient concentrations to very high accuracy (greater than 22 bits) to ensure optimal growth. I argue that such accuracies are not achievable in practice. Natural selection may thus face fundamental limitations in maximizing the information processing capacity of cells. The analysis of metabolic networks opens a door to understanding cellular biology from a quantitative, information-theoretic perspective.

Statistics

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

52 downloads since deposited on 11 Feb 2008
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2007
Deposited On:11 Feb 2008 12:20
Last Modified:28 Aug 2017 11:25
Publisher:BioMed Central
ISSN:1752-0509
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1752-0509-1-33
PubMed ID:17663759

Download

Download PDF  'From bit to it: How a complex metabolic network transforms information into living matter'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)