Header

UZH-Logo

Maintenance Infos

Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis


Volpi, Michele; Camps-Valls, Gustau; Tuia, Devis (2015). Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 107:50-63.

Abstract

In this paper we present an approach to perform relative spectral alignment between optical cross-sensor acquisitions. The proposed method aims at projecting the images from two different and possibly disjoint input spaces into a common latent space, in which standard change detection algorithms can be applied. The system relies on the regularized kernel canonical correlation analysis transformation (kCCA), which can accommodate nonlinear dependencies between pixels by means of kernel functions. To learn the projections, the method employs a subset of samples belonging to the unchanged areas or to uninteresting radiometric differences. Since the availability of ground truth information to perform model selection is limited, we propose a completely automatic strategy to select the hyperparameters of the system as well as the dimensionality of the transformed (latent) space. The proposed scheme is fully automatic and allows the use of any change detection algorithm in the transformed latent space. A synthetic problem built from real images and a case study involving a real cross-sensor change detection problem illustrate the capabilities of the proposed method. Results show that the proposed system outperforms the linear baseline and provides accuracies close the ones obtained with a fully supervised strategy. We provide a MATLAB implementation of the proposed method as well as the real cross-sensor data we prepared and employed at https://sites.google.com/site/michelevolpiresearch/codes/cross-sensor.

Abstract

In this paper we present an approach to perform relative spectral alignment between optical cross-sensor acquisitions. The proposed method aims at projecting the images from two different and possibly disjoint input spaces into a common latent space, in which standard change detection algorithms can be applied. The system relies on the regularized kernel canonical correlation analysis transformation (kCCA), which can accommodate nonlinear dependencies between pixels by means of kernel functions. To learn the projections, the method employs a subset of samples belonging to the unchanged areas or to uninteresting radiometric differences. Since the availability of ground truth information to perform model selection is limited, we propose a completely automatic strategy to select the hyperparameters of the system as well as the dimensionality of the transformed (latent) space. The proposed scheme is fully automatic and allows the use of any change detection algorithm in the transformed latent space. A synthetic problem built from real images and a case study involving a real cross-sensor change detection problem illustrate the capabilities of the proposed method. Results show that the proposed system outperforms the linear baseline and provides accuracies close the ones obtained with a fully supervised strategy. We provide a MATLAB implementation of the proposed method as well as the real cross-sensor data we prepared and employed at https://sites.google.com/site/michelevolpiresearch/codes/cross-sensor.

Statistics

Citations

6 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 29 May 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:29 May 2015 07:39
Last Modified:08 Dec 2017 13:09
Publisher:Elsevier
ISSN:0924-2716
Publisher DOI:https://doi.org/10.1016/j.isprsjprs.2015.02.005

Download