Header

UZH-Logo

Maintenance Infos

G Protein-coupled pH-sensing Receptor OGR1 Is a Regulator of Intestinal Inflammation


Abstract

BACKGROUND A novel family of proton-sensing G protein-coupled receptors, including OGR1, GPR4, and TDAG8, was identified to be important for physiological pH homeostasis and inflammation. Thus, we determined the function of proton-sensing OGR1 in the intestinal mucosa.
METHODS OGR1 expression in colonic tissues was investigated in controls and patients with IBD. Expression of OGR1 upon cell activation was studied in the Mono Mac 6 (MM6) cell line and primary human and murine monocytes by real-time PCR. Ogr1 knockout mice were crossbred with Il-10 deficient mice and studied for more than 200 days. Microarray profiling was performed using Ogr1 and Ogr1 (WT) residential peritoneal macrophages.
RESULTS Patients with IBD expressed higher levels of OGR1 in the mucosa than non-IBD controls. Treatment of MM6 cells with TNF, led to significant upregulation of OGR1 expression, which could be reversed by the presence of NF-κB inhibitors. Kaplan-Meier survival analysis showed a significantly delayed onset and progression of rectal prolapse in female Ogr1/Il-10 mice. These mice displayed significantly less rectal prolapses. Upregulation of gene expression, mediated by OGR1, in response to extracellular acidification in mouse macrophages was enriched for inflammation and immune response, actin cytoskeleton, and cell-adhesion gene pathways.
CONCLUSIONS OGR1 expression is induced in cells of human macrophage lineage and primary human monocytes by TNF. NF-κB inhibition reverses the induction of OGR1 expression by TNF. OGR1 deficiency protects from spontaneous inflammation in the Il-10 knockout model. Our data indicate a pathophysiological role for pH-sensing receptor OGR1 during the pathogenesis of mucosal inflammation.

Abstract

BACKGROUND A novel family of proton-sensing G protein-coupled receptors, including OGR1, GPR4, and TDAG8, was identified to be important for physiological pH homeostasis and inflammation. Thus, we determined the function of proton-sensing OGR1 in the intestinal mucosa.
METHODS OGR1 expression in colonic tissues was investigated in controls and patients with IBD. Expression of OGR1 upon cell activation was studied in the Mono Mac 6 (MM6) cell line and primary human and murine monocytes by real-time PCR. Ogr1 knockout mice were crossbred with Il-10 deficient mice and studied for more than 200 days. Microarray profiling was performed using Ogr1 and Ogr1 (WT) residential peritoneal macrophages.
RESULTS Patients with IBD expressed higher levels of OGR1 in the mucosa than non-IBD controls. Treatment of MM6 cells with TNF, led to significant upregulation of OGR1 expression, which could be reversed by the presence of NF-κB inhibitors. Kaplan-Meier survival analysis showed a significantly delayed onset and progression of rectal prolapse in female Ogr1/Il-10 mice. These mice displayed significantly less rectal prolapses. Upregulation of gene expression, mediated by OGR1, in response to extracellular acidification in mouse macrophages was enriched for inflammation and immune response, actin cytoskeleton, and cell-adhesion gene pathways.
CONCLUSIONS OGR1 expression is induced in cells of human macrophage lineage and primary human monocytes by TNF. NF-κB inhibition reverses the induction of OGR1 expression by TNF. OGR1 deficiency protects from spontaneous inflammation in the Il-10 knockout model. Our data indicate a pathophysiological role for pH-sensing receptor OGR1 during the pathogenesis of mucosal inflammation.

Statistics

Citations

9 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 09 Jun 2015
83 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > University Hospital Zurich > Clinic for Clinical Pharmacology and Toxicology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Gastroenterology and Hepatology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:June 2015
Deposited On:09 Jun 2015 11:10
Last Modified:04 Aug 2017 22:50
Publisher:Lippincott Williams & Wilkins
ISSN:1078-0998
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1097/MIB.0000000000000375
PubMed ID:25856770

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 3MB
View at publisher
Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB