Header

UZH-Logo

Maintenance Infos

Isolated reduction of haematocrit does not compromise in vitro blood coagulation


Iselin, B M; Willimann, P F; Seifert, Burkhardt; Casutt, M; Bombeli, T; Zalunardo, M P; Pasch, T; Spahn, D R (2001). Isolated reduction of haematocrit does not compromise in vitro blood coagulation. British Journal of Anaesthesia, 87(2):246-249.

Abstract

Low haematocrit values are generally well tolerated in terms of oxygen transport but a low haematocrit might interfere with blood coagulation. We thus sampled 60 ml of blood in 30 healthy volunteers. The blood was centrifuged for 30 min at 2000 g and separated into plasma, which contained the platelet fraction, and packed red blood cells. The blood was subsequently reconstituted by combining the entire plasma fraction with a mixture of packed red blood cells, 0.9% saline, so that the final haematocrit was either 40, 30, 20, or 10%. Blood coagulation was assessed by computerized Thrombelastograph analysis. Data were compared using repeated measures analysis of variance and post-hoc paired t-tests with Bonferroni correction. Decreasing the haematocrit from 40 to 10% resulted in a shortening of reaction time (r) and coagulation time (k), and an increase in angle alpha, maximum amplitude (MA) and clot strength (G) (all P<0.02). This pattern represents acceleration of blood coagulation with low haematocrit values. The isolated reduction in haematocrit, therefore, does not compromise in vitro blood coagulation.

Abstract

Low haematocrit values are generally well tolerated in terms of oxygen transport but a low haematocrit might interfere with blood coagulation. We thus sampled 60 ml of blood in 30 healthy volunteers. The blood was centrifuged for 30 min at 2000 g and separated into plasma, which contained the platelet fraction, and packed red blood cells. The blood was subsequently reconstituted by combining the entire plasma fraction with a mixture of packed red blood cells, 0.9% saline, so that the final haematocrit was either 40, 30, 20, or 10%. Blood coagulation was assessed by computerized Thrombelastograph analysis. Data were compared using repeated measures analysis of variance and post-hoc paired t-tests with Bonferroni correction. Decreasing the haematocrit from 40 to 10% resulted in a shortening of reaction time (r) and coagulation time (k), and an increase in angle alpha, maximum amplitude (MA) and clot strength (G) (all P<0.02). This pattern represents acceleration of blood coagulation with low haematocrit values. The isolated reduction in haematocrit, therefore, does not compromise in vitro blood coagulation.

Statistics

Citations

49 citations in Web of Science®
56 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2001
Deposited On:07 Jul 2015 08:13
Last Modified:05 Apr 2016 19:18
Publisher:Oxford University Press
ISSN:0007-0912
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/bja/87.2.246
PubMed ID:11493497

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations