Header

UZH-Logo

Maintenance Infos

Pancreatic endocrine tumors are a rare manifestation of the neurofibromatosis type 1 phenotype: molecular analysis of a malignant insulinoma in a NF-1 patient


Perren, Aurel; Wiesli, Peter; Schmid, Sonja; Montani, Matteo; Schmitt, Anja; Schmid, Christoph; Moch, Holger; Komminoth, Paul (2006). Pancreatic endocrine tumors are a rare manifestation of the neurofibromatosis type 1 phenotype: molecular analysis of a malignant insulinoma in a NF-1 patient. American Journal of Surgical Pathology, 30(8):1047-1051.

Abstract

The tumorigenesis of sporadic endocrine tumors is still not fully understood. It is well known that patients with von Recklinghausen syndrome (NF-1) (OMIM 162200) carrying NF1 germline mutations are predisposed to endocrine tumors including pheochromocytomas and duodenal somatostatinomas. It is unclear, however, whether the rarely reported occurrence of pancreatic insulinomas in NF-1 patients represents a coincidental finding or whether insulinomas are a rare manifestation of the NF-1 syndrome. To determine the potential association between the NF-1 syndrome and pancreatic endocrine tumors, we analyzed a NF-1 patient with a well-differentiated pancreatic endocrine carcinoma for NF1 mutation, allelic loss of the NF1 gene and its expression in peripheral blood and tumor cells. The germline mutation c. 499 del TGTT known in the family was confirmed by polymerase chain reaction (PCR) and direct sequencing of exon 4 in DNA extracted from peripheral blood. Loss of heterozygosity (LOH) analysis of the NF1 gene was carried out using 3 intragenic microsatellite markers on 17q11.2. RNA expression was examined by reverse transcription and a consecutive PCR spanning intron 3 of the NF1 gene including the mutated site in exon 4. Immunohistochemistry was used to analyze NF-1 protein expression. Mutation analysis of peripheral blood leukocytes confirmed the 4 base pair deletion in exon 4 starting at codon 167 (499 del TGTT). LOH analysis of tumor tissue revealed retention of both NF1 alleles. While reverse transcriptase-PCR of peripheral blood showed bi-allelic expression of both the wild-type NF1 and the mutated form, reverse transcriptase-PCR of tumor extracts demonstrated expression of the mutated but not the wild-type NF1 allele. Additionally, neurofibromin, the NF1 gene product, was absent in the tumor tissue of the NF-1 patient. These results show that the wild-type NF1 transcrips and protein are reduced, in the reported insulinoma, supposedly by epigenetic mechanisms. This provides strong evidence that there is a relationship between von Recklinghausen disease and the patient's insulinoma. In this line, insulinomas may be viewed as a rare manifestation of the NF-1 syndrome. Furthermore, the NF1 gene must be considered as a candidate tumor suppressor gene for sporadic insulinomas and probably other pancreatic endocrine tumors.

Abstract

The tumorigenesis of sporadic endocrine tumors is still not fully understood. It is well known that patients with von Recklinghausen syndrome (NF-1) (OMIM 162200) carrying NF1 germline mutations are predisposed to endocrine tumors including pheochromocytomas and duodenal somatostatinomas. It is unclear, however, whether the rarely reported occurrence of pancreatic insulinomas in NF-1 patients represents a coincidental finding or whether insulinomas are a rare manifestation of the NF-1 syndrome. To determine the potential association between the NF-1 syndrome and pancreatic endocrine tumors, we analyzed a NF-1 patient with a well-differentiated pancreatic endocrine carcinoma for NF1 mutation, allelic loss of the NF1 gene and its expression in peripheral blood and tumor cells. The germline mutation c. 499 del TGTT known in the family was confirmed by polymerase chain reaction (PCR) and direct sequencing of exon 4 in DNA extracted from peripheral blood. Loss of heterozygosity (LOH) analysis of the NF1 gene was carried out using 3 intragenic microsatellite markers on 17q11.2. RNA expression was examined by reverse transcription and a consecutive PCR spanning intron 3 of the NF1 gene including the mutated site in exon 4. Immunohistochemistry was used to analyze NF-1 protein expression. Mutation analysis of peripheral blood leukocytes confirmed the 4 base pair deletion in exon 4 starting at codon 167 (499 del TGTT). LOH analysis of tumor tissue revealed retention of both NF1 alleles. While reverse transcriptase-PCR of peripheral blood showed bi-allelic expression of both the wild-type NF1 and the mutated form, reverse transcriptase-PCR of tumor extracts demonstrated expression of the mutated but not the wild-type NF1 allele. Additionally, neurofibromin, the NF1 gene product, was absent in the tumor tissue of the NF-1 patient. These results show that the wild-type NF1 transcrips and protein are reduced, in the reported insulinoma, supposedly by epigenetic mechanisms. This provides strong evidence that there is a relationship between von Recklinghausen disease and the patient's insulinoma. In this line, insulinomas may be viewed as a rare manifestation of the NF-1 syndrome. Furthermore, the NF1 gene must be considered as a candidate tumor suppressor gene for sporadic insulinomas and probably other pancreatic endocrine tumors.

Statistics

Citations

31 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Jul 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2006
Deposited On:24 Jul 2015 11:02
Last Modified:05 Apr 2016 19:19
Publisher:Lippincott Williams & Wilkins
ISSN:0147-5185
Publisher DOI:https://doi.org/10.1097/00000478-200608000-00018
PubMed ID:16861979

Download