Header

UZH-Logo

Maintenance Infos

pVHL and GSK3beta are components of a primary cilium-maintenance signalling network


Thoma, Claudio R; Frew, Ian J; Hoerner, Christian R; Montani, Matteo; Moch, Holger; Krek, Wilhelm (2007). pVHL and GSK3beta are components of a primary cilium-maintenance signalling network. Nature Cell Biology, 9(5):588-595.

Abstract

Defects in the structure or function of the primary cilium, an antennae-like structure whose functional integrity has been linked to the suppression of uncontrolled kidney epithelial cell proliferation, are a common feature of genetic disorders characterized by kidney cysts. However, the mechanisms by which primary cilia are maintained remain poorly defined. von Hippel-Lindau (VHL) disease is characterized by the development of premalignant renal cysts and arises because of functional inactivation of the VHL tumour suppressor gene product, pVHL. Here, we show that pVHL and glycogen synthase kinase (GSK)3beta are key components of an interlinked signalling pathway that maintains the primary cilium. Although inactivation of either pVHL or GSK3beta alone did not affect cilia maintenance, their combined inactivation leads to loss of cilia. In VHL patients, GSK3beta is subjected to inhibitory phosphorylation in renal cysts, but not in early VHL mutant lesions, and these cysts exhibit reduced frequencies of primary cilia. We propose that pVHL and GSK3beta function together in a ciliary-maintenance signalling network, disruption of which enhances the vulnerability of cells to lose their cilia, thereby promoting cyst formation.

Abstract

Defects in the structure or function of the primary cilium, an antennae-like structure whose functional integrity has been linked to the suppression of uncontrolled kidney epithelial cell proliferation, are a common feature of genetic disorders characterized by kidney cysts. However, the mechanisms by which primary cilia are maintained remain poorly defined. von Hippel-Lindau (VHL) disease is characterized by the development of premalignant renal cysts and arises because of functional inactivation of the VHL tumour suppressor gene product, pVHL. Here, we show that pVHL and glycogen synthase kinase (GSK)3beta are key components of an interlinked signalling pathway that maintains the primary cilium. Although inactivation of either pVHL or GSK3beta alone did not affect cilia maintenance, their combined inactivation leads to loss of cilia. In VHL patients, GSK3beta is subjected to inhibitory phosphorylation in renal cysts, but not in early VHL mutant lesions, and these cysts exhibit reduced frequencies of primary cilia. We propose that pVHL and GSK3beta function together in a ciliary-maintenance signalling network, disruption of which enhances the vulnerability of cells to lose their cilia, thereby promoting cyst formation.

Statistics

Citations

137 citations in Web of Science®
141 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Jul 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2007
Deposited On:24 Jul 2015 09:01
Last Modified:22 Nov 2017 16:49
Publisher:Nature Publishing Group
ISSN:1465-7392
Publisher DOI:https://doi.org/10.1038/ncb1579
PubMed ID:17450132

Download