Assessing the paradox between transmitted and acquired HIV type 1 drug resistance mutations in the Swiss HIV cohort study from 1998 to 2012

Yang, Wan-Lin; Kouyos, Roger; Scherrer, Alexandra U; Böni, Jürg; Shah, Cyril; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Furrer, Hansjakob; Battegay, Manuel; Cavassini, Matthias; Bernasconi, Enos; Vernazza, Pietro; Held, Leonhard; Ledergerber, Bruno; Günthard, Huldrych F; Swiss HIV Cohort Study

Abstract: BACKGROUND: Transmitted human immunodeficiency virus type 1 (HIV) drug resistance (TDR) mutations are transmitted from nonresponding patients (defined as patients with no initial response to treatment and those with an initial response for whom treatment later failed) or from patients who are naive to treatment. Although the prevalence of drug resistance in patients who are not responding to treatment has declined in developed countries, the prevalence of TDR mutations has not. Mechanisms causing this paradox are poorly explored. METHODS: We included recently infected, treatment-naive patients with genotypic resistance tests performed 1 year after infection and before 2013. Potential risk factors for TDR mutations were analyzed using logistic regression. The association between the prevalence of TDR mutations and population viral load (PVL) among treated patients during 1997-2011 was estimated with Poisson regression for all TDR mutations and individually for the most frequent resistance mutations against each drug class (ie, M184V/L90M/K103N). RESULTS: We included 2421 recently infected, treatment-naive patients and 5399 patients with no response to treatment. The prevalence of TDR mutations fluctuated considerably over time. Two opposing developments could explain these fluctuations: generally continuous increases in the prevalence of TDR mutations (odds ratio, 1.13; P = .010), punctuated by sharp decreases in the prevalence when new drug classes were introduced. Overall, the prevalence of TDR mutations increased with decreasing PVL (rate ratio [RR], 0.91 per 1000 decrease in PVL; P = .033). Additionally, we observed that the transmitted high-fitness-cost mutation M184V was positively associated with the PVL of nonresponding patients carrying M184V (RR, 1.50 per 100 increase in PVL; P < .001). Such association was absent for K103N (RR, 1.00 per 100 increase in PVL; P = .99) and negative for L90M (RR, 0.75 per 100 increase in PVL; P = .022). CONCLUSIONS: Transmission of antiretroviral drug resistance is temporarily reduced by the introduction of new drug classes and driven by nonresponding and treatment-naive patients. These findings suggest a continuous need for new drugs, early detection/treatment of HIV-1 infection.

DOI: https://doi.org/10.1093/infdis/jiv012

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-111815
Accepted Version

Originally published at:
Yang, Wan-Lin; Kouyos, Roger; Scherrer, Alexandra U; Böni, Jürg; Shah, Cyril; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Furrer, Hansjakob; Battegay, Manuel; Cavassini, Matthias; Bernasconi, Enos;
DOI: https://doi.org/10.1093/infdis/jiv012
Assessing the paradox between transmitted and acquired HIV-1 drug resistance in the Swiss HIV Cohort Study from 1998 to 2012

Wan-Lin Yang, Roger Kouyos, Alexandra U Scherrer, Jürg Böni, Cyril Shah, Sabine Yerly, Thomas Klimkait, Vincent Aubert, Hansjakob Furrer, Manuel Battegay, Matthias Cavassini, Enos Bernasconi, Pietro Vernazza, Leonhard Held, Bruno Ledergerber, Huldrych F. Günthard, and the Swiss HIV Cohort Study (SHCS)

1Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
2Swiss National Center for Retroviruses, Institute of Medical Virology, University of Zurich, Zurich, Switzerland
3Laboratory of Virology, Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
4Department of Biomedicine-Petersplatz, University of Basel, Basel, Switzerland
5Division of Immunology and Allergy, University Hospital Lausanne, Lausanne, Switzerland
6Department of Infectious Diseases, Berne University Hospital and University of Berne, Berne, Switzerland
7Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
8Division of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland
9Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
10Division of Infectious Diseases, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
11Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland

Corresponding author: Huldrych F. Günthard, University Hospital Zurich, Division of Infectious Diseases and Hospital Epidemiology; Rämistrasse 100, 8092 Zurich, Switzerland, e-mail: huldrych.guenthard@usz.ch, phone number: +41 44 255 34 50, fax number: +41 44 255 32 91

© The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Abstract

Background
Transmitted HIV-1 drug-resistance mutations (TDR) are transmitted from treatment-failing or treatment-naïve patients. Although prevalence of drug-resistance in treatment-failing patients has declined in developed countries, TDR prevalence has not. Mechanisms causing this paradox are poorly explored.

Methods
We included recently-infected, treatment-naïve patients with genotypic-resistance-tests performed ≤1 year post-infection and <2013. Potential risk factors for TDR were analyzed using logistic regression. Association of TDR prevalences with population viral load (PVL) from treatment-patients during 1997-2011 was estimated with Poisson regression for all TDR and individually for most frequent resistance-mutations against each drug class (M184V/L90M/K103N).

Results
We included 2421 recently-infected, treatment-naïve patients and 5399 treatment-failing patients. TDR prevalence fluctuated considerably over time. Two opposing developments could explain these fluctuations: generally continuous increases in TDR (Odds Ratio [OR]=1.13, p=0.010), punctuated by sharp decreases when new drug-classes were introduced. Overall, TDR prevalence increased with decreasing PVL (Rate Ratio [RR]=0.91/100Log_{10}-PVL, p=0.033). Additionally, we observed that the transmitted high-fitness-cost mutation M184V was positively associated with PVL of treatment-failing patients carrying M184V (RR=1.50/100Log_{10}-PVL, p<0.001). Such association was absent and negative for K103N (RR-K103N=1.00/100Log_{10}-PVL, p=0.99) and L90M (RR-L90M=0.75/100Log_{10}-PVL, p=0.022), respectively.
Conclusions

Transmission of antiretroviral drug-resistance is temporarily reduced by the introduction of new drug classes and driven by treatment-failing and treatment-naïve patients. These findings suggest a continuous need for new drugs, early detection/treatment of HIV-1-infection.
Introduction

Transmission of HIV-1 infection depends strongly on individual levels of plasma viremia [1]. When HIV-1-infected patients receive suboptimal treatment or incomplete adherence to antiretroviral therapy (ART), drug-resistant viruses emerge and continue replicating. Therefore, the general assumption is that drug-resistant viruses are mainly transmitted from treated patients with high levels of HIV viremia due to failed treatment [2]. Modern ART reduces the viremia levels and transmissibility of HIV-1 more effectively than earlier ART [3], suggesting less emergence [4] and transmission of HIV-1 drug-resistance over time.

In recent years, the incidence and prevalence of acquired drug-resistance mutations (ADRs) in treated patients has indeed declined due to effective ART in various developed countries [5,6]. However, prevalence of transmitted drug-resistance mutations (TDR) has often remained stable [7-9]. TDR may cause early virological failure when patients start their first-line therapy [10]. Certain TDR can persist for years in the absence of drug pressure after seroconversion [11] and have long-term potential to jeopardize the effectiveness of ART; other TDR may disappear rapidly and become undetectable via population sequencing [11,12]. Recently, transmission of minority variants harboring drug-resistance has been demonstrated [13]. Difficulties in detecting TDR upon ART-initiation might therefore compromise the treatment success achieved thus far.

In the current study we aimed at analysing the risk factors of TDR, and resolving the discrepant patterns of TDR and ADR prevalence over time. The unique SHCS dataset, which is representative for ≥15 years, allows us to determine the impact of temporarily changing factors such as numbers of available drug classes. We adapted population viral load (PVL) as a tool to assess the spread of drug-resistance and the transmission potential of the treatment-experienced population. We focused specifically on TDR during recent infections to avoid potential bias caused by different TDR persistence times.
Methods

Study population

The SHCS, enrolling patients since 1988, is a prospective, nationwide, clinic-based study including a biobank. The SHCS is representative for the HIV epidemiology in Switzerland; it includes at least 53% of all HIV cases ever diagnosed in Switzerland, 72% of all patients receiving ART, and 69% of the nationwide registered AIDS cases [14]. Additionally, we enrolled patients from the Zurich Primary HIV-infection study (ZPHI:www.clinicaltrials.gov; ID=NCT00537966) which focuses on identifying and treating patients during early infection [15]. Ethical approval from all participating institutions and written informed consent from all patients was obtained [14-16].

To identify the TDR prevalence, we included recently-infected, treatment-naïve patients (definition:see below) with a genotypic resistance test (GRT) performed before 1.1.2013. The first GRT from each recently-infected, treatment-naïve individual was considered. All sequences before 1996 were grouped as ≤1995 because of small sample sizes. For the association analysis, in which we tested whether TDR prevalence is associated with the PVL from ART-failing patients, we included ART-failing patients from 1997-2011 due to the representative availability of VL testing since 1997.

GRTs stem from routine-clinical testing performed by four laboratories in Switzerland authorized by the Federal Office of Public Health. All laboratories perform population-based sequencing of the full protease gene and at least codons 28–225 of the reverse transcriptase gene using commercial assays (Virosaq vs.1 PE Biosystems;Virsoseq vs. 2, Abbott AG; vircoTYPE HIV-1 Assay, Virco Lab) and in-house methods [17] and participate in the yearly quality control evaluation by the Agence Nationale de la Recherche du SIDA (ANRS) since 2002. All sequences are entered into the SHCS drug-resistance database using SmartGene’s Integrated Database Network System (SmartGene, Zug, Switzerland, IDNS.
version 3.6.3) [18]. Additionally, we performed systematically retrospective sequencing for blood samples that were stored in the biobank before routine genotyping was introduced (over 11000 sequences were retrospectively generated). Subtyping was performed on the protease and the reverse transcriptase sequence using REGA 2 (http://jose.med.kuleuven.be/genotypetool/html/subtypinghiv.html). If this method returned inconclusive results, the analysis was repeated with the Star analyzer (http://www.vgb.ucl.ac.uk/starn.shtml) [19]. TDR were identified using the WHO list for surveillance of transmitted HIV drug-resistance [20].

Definition of recent infection

To account for potential reversion of TDR in the absence of drug pressure [11,21-25], we restricted our study population to treatment-naïve patients having been diagnosed ≤1 year after infection. Specifically, we determined recent infection with one of the following methods:

1. Documented acute HIV-1 infection as previously described [15].
2. Documented seroconversion (<1 year between the last negative and first positive HIV tests).
3. For those lacking the data mentioned above, the ambiguity score [26] was used. It is a measure of the viral nucleotide diversity from bulk sequencing which estimates the infection duration. Sequences with ≤0.5% ambiguous nucleotides were considered to be GRTs from recently-infected patients [26]. However, as diversity may be low in long-term HIV-infections, patients with a score ≤0.5% and a CD4 count <200 were excluded to reduce false positives. For validation of this method, see Supplementary Material.

The viral burden of treatment-failing patients

PVL was used to describe the viral burden of ART-failing patients for the coming year on a population level. We summed up the log_{10} transformed VLs from all ART-failing patients of a
given year. For further analyses, where we studied the transmission pattern of a specific TDR, the total of log_{10} transformed VLs from ART-failing patients carrying the corresponding mutation was used. Only VLs corresponding to a GRT were included for these analyses because genotyping was needed to determine drug-resistance mutations.

To acquire all potential treatment failures, we defined treatment failure as having a VL \(\geq 400 \) copies/mL after 180 days of continuous ART. VL measurement was not fully integrated into the clinical routine before 1997, so we included VLs from treatment-failing patients during 1997-2011. Each person contributed to each year once. If a patient had \(\geq 2 \) VLs measured within the same year, we calculated the mean for that year.

Statistical methods

Potential risk factors for acquiring any TDR were analyzed using logistic regression. Variables investigated were ethnicity (Caucasian, Black, others), gender (male, female), transmission group (men having sex with men [MSM], heterosexual transmission [HSX], injecting drug users [IDU], others), HIV-1 subtype (B, non-B), and the calendar year of sampling (fitted as a continuous variable). Additionally, since we suspected that less optimal regimens resulting from fewer choices of available drugs might have influenced TDR transmission, we included the number of available drug classes as an ordered categorical variable (the p-value was obtained from the test for trend). In Switzerland, HIV-1 treatment occurred in five eras, each separated by the introduction of a new drug class: Mono-class therapy with nucleoside analogue reverse transcriptase inhibitors (NRTI) was used before 1996 (1 drug class: \(\leq 1996 \)). After the introduction of unboosted protease inhibitors (PI) in 1996, patients could obtain dual-class regimens (2 classes: 1997-1998). Subsequently, non-nucleoside analogue reverse transcriptase inhibitors (NNRTI) were introduced in 1998 (3 classes: 1999-2000), followed by boosted PI (PI/r) in 2000 (4 classes: 2001-2008), and integrase inhibitor (InSTI) in 2008 (5 classes: 2009-2012). In the model we included binary response indicating detection of any TDR from each patient as an outcome. We analyzed
variables independently and included those associated significantly with the outcome into the multivariable model (HIV subtype and transmission group). We also chose variables a priori regardless of univariable significance due to likely biological impacts (sex, year, and number of available drug classes). For TDR to individual drug classes, we included the same co-variables in the multivariable models for reasons of consistency to avoid obtaining a different set of variables for each drug class. We found no collinearity and interactions between any included variable. Missing data were list-wise deleted. We calculated odds of TDR detection from our fitted multivariable model by retaining all co-variables except for year and number of available drug classes at baseline, and transformed the predicted odds to annual prevalences.

In the association analysis we applied Poisson regression to assess the association of TDR transmission with treatment-failing patients as potential transmitters. We considered annual rates of GRTs detecting TDR from recently-infected, treatment-naïve patients as outcome and PVL of all treatment-failing patients from the previous year as explanatory variable. We further studied the association for the most prevalent drug-resistance mutation for each major drug class in the SHCS: M184V, L90M, and K103N for NRTI, PI, and NNRTI, respectively. In this individual-mutation analysis, we fitted the model with the annual prevalence of each of these three transmitted mutations as outcome and the PVL of ART-failing patients carrying the corresponding mutation from the previous year as explanatory variable. We performed sensitivity analyses including PVL from the same year of GRTs performed or from two years before (see Supplementary Material).

We expressed our results with 95% CI and two-sided p-values, with p<0.05 being statistically significant. Data analyses were performed with Stata 13.0 SE (StataCorp, Texas, USA).

Subgroup analysis

Considering that transmission to some SHCS patients may have occurred abroad and that the TDR prevalences of those patients would be less relevant to treatment-experienced
patients in Switzerland, we repeated the association analyses with only those patients found in Swiss transmission clusters, defined phylogenetically [27]. To summarize, HIV-1 subtype B pol sequences from 8271 SHCS patients were pooled with foreign pol sequences from the Los Alamos Sequence database (n=36230). Clusters were defined as clades containing ≥10 sequences and consisting of ≥80% sequences from the SHCS.

Results

Fraction of positive GRTs in the SHCS

Figure 1 summarizes the fraction of TDR and ADR from all 20120 GRTs sampled before 1.1.2013 regardless of the infection duration stratified by treatment status (naïve/experienced). Specifically, 10504 GRTs were from 7920 treatment naïve and 9616 GRTs from 4816 treatment-experienced individuals.

ADR reached a peak at 85% in 1998 and dropped continuously since then to a plateau at ~38% in 2009. This strong decrease of fraction of positive GRTs for ADR (linear regression: -2.8%/year [-3.4%,-2.2%]; p<0.001) was not followed by a parallel decrease but rather a slight increase of fraction of positive GRTs for TDR (0.3%/year [0.2%,0.5%]; p<0.001). To further dissect this discrepancy and to avoid possible bias introduced by different persistence times of TDRs, we focused on studying treatment-naïve patients with GRTs performed within recent infection.

Study population including recently-infected, treatment-naïve and treatment-failing patients

We identified 2421 (31%) recently-infected patients from 7920 treatment-naïve patients in the SHCS with ≥1 GRT performed between June 26, 1992 and Dec.18, 2012. Additionally, we included 5399 patients having failed ≥1 regimen within years 1997-2011, presenting 18097
yearly-unique VL measurements. For detailed patient selection, see Figure 2. For representativeness of study population see Supplementary Figure S1.

TDR prevalences over time in recently-infected treatment-naïve patients and associated risk factors

TDR prevalences fluctuated substantially over time with the median (range) as follows: 9.1% (2.2%, 15.6%) to any drug; 5.8% (2.2%, 14.3%) to NRTI; 2.5% (0, 4.8%) to PI; 1.4% (0, 5.1%) to NNRTI (Figure 3, black dots).

We observed two opposing developments in the multivariable logistic model that could explain the complex fluctuations of TDR prevalences (Table 1). On the one hand, overall TDR prevalence dropped after introduction of new drug classes. In particular, prevalences of TDRs significantly dropped after PI/r and InSTI became available. On the other hand, we found a linear increase of TDR prevalences when the number of available drug classes remained constant (Figure 3). The combination of these two opposing developments resulted in TDR prevalences, which increased in the absence of new drugs but decreased sharply upon introduction of new drug classes. TDR prevalences predicted from this model were shown in Figure 3 (blue lines).

Additionally, prevalences of TDR to individual drug classes showed similar but not significant patterns as mentioned above (Supplementary Table S1.1-S1.3).

Association of drug-resistance transmission with the viral burden of treatment-failing patients

We further investigated whether drug-resistance transmission was associated with treatment-failing patients. We fitted annual prevalences of any TDR (outcome) and PVL of treatment-failing patients from the previous year (explanatory variable) with a Poisson regression model. The rate ratio (RR) was 0.91/1000 PVL (0.83, 0.99; p=0.033), indicating a 9%
increase of TDR prevalence for a decrease of PVL of ART-failing patients from the previous year by 1000 (Figure 4A,E). PVL itself decreased over time (linear regression: -318/year [-438,-197]; p<0.001). When we considered patients identified in Swiss transmission clusters, we found no discernible evidence for an association between TDR and PVL (RR=0.76/1000 PVL [0.43,1.34]; p=0.34).

Taken together, our results suggested no or a negative association between TDR prevalences and PVL of ART-failing patients from the previous year.

Transmission of the class specific drug-resistance mutations M184V, L90M, K103N

The above analysis pooled all TDRs and potentially neglected the differential behavior of individual mutations. We therefore performed individual-mutation analysis for the most prevalent drug-resistance mutation for each drug class.

Transmitted M184V increased 1.5 fold for an increase of PVL from ART-failing patients carrying M184V from the previous year by 100 (RR=1.50/100 PVL [1.20,1.86]; p<0.001; Figure 4B,F). This association increased to ~6 fold when only TDRs from Swiss transmission clusters were considered (RR=5.68/100 PVL [1.21,26.7]; p=0.028). On the contrary, we observed a negative association between the transmitted L90M and PVL from ART-failing patients carrying L90M from the previous year (RR=0.75/100 PVL [0.58,0.96]; p=0.022; Figure 4C,G); the association became stronger when TDRs from Swiss transmission clusters were considered (RR=0.07/100 PVL [0.01,0.46]; p=0.006). For K103N no association was detected (RR=1.00/100 PVL [0.73,1.37]; p=0.99; Figure 4D,H) and RR became negative when including only patients from Swiss transmission clusters but without reaching significance (RR=0.02/100 PVL [0.0002,1.55]; p=0.078).

Sensitivity analyses using PVL from different years, and validating the ambiguity score for identifying recent infections showed that our results were robust (Supplementary Table S2, S3.1, S3.2). For a summary of sample size and method used in each analysis see Supplementary Table 4.
Discussion

In this study we investigated the paradox between the decrease in ADR prevalence [5,6,28] and a nearly stable prevalence of TDR [7,8,29-31]. If TDR indeed primarily originate from ART-failing patients with ADR, this discrepancy is counterintuitive. We therefore tested whether transmission of drug-resistant viruses was dependent on ART-failing patients in the SHCS, which is representative for Switzerland, over a 15-year time period. A large, clearly defined recently-infected, treatment-naïve population was used to calculate TDR prevalences.

Our results indicate that drug-resistance transmission is not predominantly driven by treatment-failing patients, but rather by a complex mixture of both ART-failing and ART-naïve patients. Despite PVL of treatment-failing patients decreased continuously, TDR prevalences increased over time. When specific TDRs were studied individually, distinct transmission patterns emerged. The prevalence of transmitted M184V correlated positively with PVL from ART-failing patients carrying M184V from the previous year. This association became stronger for patients included in Swiss transmission clusters. This suggests that the treatment-failing population is the major transmission source for M184V. In contrast, no positive association was found for L90M or K103N. We detected a negative association between prevalences of transmitted L90M and PVL from ART-failing patients carrying L90M from the previous year. This implies that major transmission reservoirs for these mutations are treatment-naïve rather than treatment-failing patients.

How can we explain such divergent transmission patterns between specific drug-resistance mutations? It is most likely due to the differential fitness costs, which represent the reduced ability of a virus harboring a drug-resistance mutation to replicate in the absence of the drug to which the mutation confers resistance. Generally, drug-resistant viruses will be replaced gradually by fitter viruses when drug pressure is not present, and the rate of the replacement depends on the degree of the fitness cost [32]. M184V disappears at a fast rate after
transmission [11] without drug pressure due to its high fitness cost [33]. Therefore, M184V was rarely found in a drug-naïve population and its transmission depends on treatment-failing patients. In contrast, low-fitness-cost mutations L90M and K103N [23,34,35] persist longer in the absence of drug pressure [23], and may therefore persist within the ART-naïve population, which thus becomes an important source for transmission of these mutations. This interpretation is further supported by the fact that occurrence of L90M among recently-infected, treatment-naïve patients has increased years after the PVL from ART-failing patients carrying L90M started to decrease (Figure 4), resulting in the negative association from the Poisson regression. A similar but weaker phenomenon was observed for K103N. Various combinatorial ART-regimens might contribute to differences between transmission patterns of L90M and K103N. Drugs selecting for L90M, mainly saquinavir and nelfinavir, have been almost unused in Switzerland for many years, indicating circulation of transmitted L90M within the treatment-naïve population. On the other hand, drugs selecting for K103N, such as efavirenz and nevirapine, are still in heavy use, implying that transmission of K103N is fueled both by treatment-failing and treatment-naïve patients.

Complemented by results from previous phylogenetic analyses [36-38], our study further illustrates that the treatment-naïve population is a major source for ongoing transmission of low-fitness-cost mutations. Early diagnosis and treatment of HIV-1-infected individuals is warranted to block the otherwise self-fueling mechanism of unrecognized TDR, which persist in this population due to low fitness costs.

In the SHCS TDR prevalences fluctuated considerably over time. We hypothesized that introductions of new drugs had an effect on these fluctuations, because new drugs improve control of viremia in treated patients. Indeed, after each introduction of a new drug class, a drop in TDR prevalences was observed: in 1997 after introduction of PI, 1999 after NNRTI, 2001 after PI/r, and 2009 after InSTI (Figure 3). Despite the universal and unlimited access to ART in Switzerland, TDR prevalences could not be reduced over an 18-year study period.
(Figure 3A). Possibly, even more TDRs would have occurred without a constant influx of new therapy options. This highlights the importance of a drug pipeline that constantly delivers new medications.

There are several limitations to this study. Although our study was limited to a single country, we believe that our findings are generalizable to settings with similar HIV epidemics and treatment policies (for generalizability see Supplementary Material). In the correlation analyses we used measures of treatment-failing patients from the previous year because we assumed that treatment-failing patients could transmit drug-resistance approximately within one year before salvage treatment is fully active. Sensitivity analyses using PVL from the same year or two years before revealed similar results to the original model (Supplementary Table S2). Furthermore, the lack of positive associations from individual-mutation analyses of L90M/K103N does not causally prove that treatment-naive individuals are the main source for the transmission. Though unlikely due to the well-studied transmission dynamics within the SHCS [27], we cannot exclude that patients carrying the transmitted L90M/K103N in our study population might all have been infected abroad and thus the ART-failing PVL as measured in the SHCS would not be relevant. However, the subgroup analysis including only patients from Swiss transmission clusters confirmed the same finding.

Conclusions

We demonstrated that transmission of antiretroviral drug-resistance is temporarily reduced by the introduction of new drug classes and driven both by treatment-failing and treatment-naive patients. These findings suggest a continuous need for new drugs, early detection and early treatment of HIV-1 infection to successfully control the spread of TDR in the long term.
Acknowledgments

We thank the patients who participate in the SHCS; the physicians and study nurses for excellent patient care; the resistance laboratories for high-quality genotypic drug-resistance testing; SmartGene, Zug, Switzerland, for technical support; Brigitte Remy, RN, Martin Rickenbach, MD, Franziska Schöni-Affolter, MD, and Yannick Vallet, MSc from the SHCS Data Center in Lausanne for data management; and Danièle Perraudin and Mirjam Minichiello for administrative assistance.

The members of the SHCS are:
Footnotes

This work was presented in part at the International Workshop on HIV & Hepatitis Virus Drug Resistance and Curative Strategies, Toronto, 2013, June 4-8, 2013, Abstract # A21.

Contact information of corresponding author

Huldrych F. Günthard, University Hospital Zurich, Division of Infectious Diseases and Hospital Epidemiology; Rämistrasse 100, 8092 Zurich, Switzerland
e-mail: huldrych.guenthard@usz.ch
phone number: +41 44 255 34 50, fax number: +41 44 255 32 91

Funding statement

This study has been financed in the framework of the Swiss HIV Cohort Study, supported by the Swiss National Science Foundation (SNF grant #33CS30-134277) and the SHCS projects #470, 528, 569, 683, the SHCS Research Foundation, the Swiss National Science Foundation (grant # 324730-130865 to HFG), the European Community’s Seventh Framework Program (grant FP7/ 2007–2013), under the Collaborative HIV and Anti-HIV Drug-resistance Network (CHAIN; grant 223131, to HFG), by the Yvonne-Jacob foundation, and by a further research grant of the Union Bank of Switzerland, in the name of an anonymous donor to HFG, an unrestricted research grant from Gilead, Switzerland to the SHCS research foundation, and by the University of Zurich’s Clinical research Priority Program (CRPP) “Viral infectious diseases: Zurich Primary HIV Infection Study” (to HFG). R. Kouyos was supported by SNF # PZ00P3-142411. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Potential conflicts of interest

H.F.G. has been an adviser and/or consultant for the following companies: GlaxoSmithKline, Abbott, Gilead, Novartis, Boehringer Ingelheim, Roche, Tibotec, Pfizer and Bristol-Myers Squibb, and has received unrestricted research and educational grants from Roche, Abbott, Bristol-Myers Squibb, Gilead, Astra-Zeneca, GlaxoSmithKline, and Merck Sharp & Dohme (all money went to institution).
E.B. has been consultant for BMS, Gilead, Viiv Healthcare, Pfizer, MSD, and Janssen. He has received unrestricted research grants from Gilead, Abbott, Roche and MSD. He also received travel grants from BMS, Boehringer Ingeldheim, Gilead, MSD, and Janssen.

S.Y. has been consultant for BMS, has received unrestricted research and educational grants from Roche, Viiv and Gilead.

T.K. served as advisor for Bristol-Myers Squibb and Pfizer and has received travel grants from Abbott and Pfizer.

L.H. has been consultant for Roche and Nycomed (now owned by Takeda Pharmaceuticals).
References

Table 1: Univariable and multivariable analysis for the overall TDR prevalences

<table>
<thead>
<tr>
<th>No. with resistance / Total No. in subgroup (%)</th>
<th>OR (95% CI) in univariable analysis</th>
<th>p-value</th>
<th>OR (95% CI) in multivariable analysis</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 (28, 42)c</td>
<td>1.00 (0.98 - 1.01)</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>182/1985 (9.2)</td>
<td>1.00 (Ref.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>16/222 (7.2)</td>
<td>0.77 (0.45 - 1.31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Othersd</td>
<td>9/148 (6.1)</td>
<td>0.64 (0.32 - 1.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV Subtype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>167/1683 (9.9)</td>
<td>1.00 (Ref.)</td>
<td>1.00 (Ref.)</td>
<td>0.03</td>
</tr>
<tr>
<td>Non-B</td>
<td>40/672 (6.0)</td>
<td>0.57 (0.40 - 0.82)</td>
<td>0.65 (0.43 - 0.98)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>173/1853 (9.3)</td>
<td>1.00 (Ref.)</td>
<td>1.00 (Ref.)</td>
<td>0.10</td>
</tr>
<tr>
<td>Female</td>
<td>34/502 (6.8)</td>
<td>0.71 (0.48 - 1.03)</td>
<td>0.96 (0.60 - 1.55)</td>
<td></td>
</tr>
<tr>
<td>Transmission Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM</td>
<td>129/1248 (10.3)</td>
<td>1.00 (Ref.)</td>
<td>1.00 (Ref.)</td>
<td>0.03</td>
</tr>
<tr>
<td>HSX</td>
<td>52/770 (6.8)</td>
<td>0.63 (0.45 - 0.88)</td>
<td>0.83 (0.52 - 1.30)</td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td>22/263 (8.4)</td>
<td>0.79 (0.49 - 1.27)</td>
<td>0.86 (0.51 - 1.45)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>4/74 (5.4)</td>
<td>0.50 (0.18 - 1.38)</td>
<td>0.57 (0.20 - 1.60)</td>
<td></td>
</tr>
<tr>
<td>No. of available drug classes</td>
<td></td>
<td>0.77</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>1 (NRTI)</td>
<td>10/125 (8.0)</td>
<td>0.97 (0.49 - 1.91)</td>
<td>2.99 (0.99 - 9.02)</td>
<td></td>
</tr>
<tr>
<td>2 (NRTI, PI)</td>
<td>20/220 (9.1)</td>
<td>1.12 (0.66 - 1.84)</td>
<td>2.85 (1.19 - 6.83)</td>
<td></td>
</tr>
<tr>
<td>3 (NRTI, PI, NNRTI)</td>
<td>25/235 (10.6)</td>
<td>1.33 (0.84 - 2.11)</td>
<td>2.75 (1.36 - 5.55)</td>
<td></td>
</tr>
<tr>
<td>4 (NRTI, PI, NNRTI, PI/r)</td>
<td>103/1252 (8.2)</td>
<td>1.00 (Ref.)</td>
<td>1.00 (Ref.)</td>
<td></td>
</tr>
<tr>
<td>5 (NRTI, PI, NNRTI, PI/r, InSTI)</td>
<td>49/523 (9.4)</td>
<td>1.15 (0.81 - 1.65)</td>
<td>0.61 (0.34 - 1.07)</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>2005 (2001, 2008)c</td>
<td>1.02 (0.98 - 1.05)</td>
<td>0.32</td>
<td>1.13 (1.03 - 1.23)</td>
</tr>
</tbody>
</table>

a. We used logistic regression to model the odds of being detected as carrying TDR. The dependent variable was included as a binary response indicating whether any TDR was detected. All co-variables were categorical except for age and year that were continuous variables. In the multivariable model, we included significant variables from a univariable model: HIV subtype and transmission group. Variables chosen a priori to be included regardless of univariable significance were sex, number of available drug classes, and calendar year. Missing data were list-wise deleted, resulting that 66/2421=2.7% of patients were deleted due to missing subtype.

b. Number of patients with any drug resistance from the recently-infected, treatment-naïve patients with a clearly defined subtype (n = 2355).

c. For age and year, median (IQR) was shown

d. Others includes Asian, Hispanic, others, and unknown

e. MSM: men having sex with men, HSX: heterosexual, IDU: intravenous drug users, Others: others and unknown

f. NRTI: nucleotide reverse transcriptase inhibitor; PI: protease inhibitor; NNRTI: non-nucleotide reverse transcriptase inhibitor; PI/r: boosted protease inhibitor; InSTI: integrase inhibitor

g. p-value was obtained from the test for trend.

h. increment is per year
Figure legends

Figure 1: Fraction of positive GRTs detecting any drug-resistance mutation for acquired and transmitted drug-resistance in the SHCS

20120 GRTs were generated in total before 1.11.2013 in the SHCS. 10504 GRTs (blue triangles) were performed from 7920 patients when they were treatment-naïve (regardless of recent infection), and 9616 GRTs (red dots) from 4816 individuals when they were treatment-experienced. Fractions of positive GRTs detecting any drug-resistance mutation for both populations were shown. The annual numbers of included GRTs from treatment-experienced (first row, red) and from treatment-naïve (second row, blue) patients were listed below the graph. Linear regression with fraction as dependent variable and year as explanatory variable showed that the fraction of positive drug-resistance tests in treatment-experienced patients has declined substantially over time (-2.8% per year [-3.4%, -2.2%]; p<0.001), whereas the fraction of positive drug-resistance tests in treatment-naïve patients has not (0.3% per year [0.2%, 0.5%]; p<0.001).

vertical bars = 95% CI

Figure 2: Patient selection profile

Numbers outside of the box indicate exclusions. (A) Selection profile for the recently-infected, treatment-naïve population. We selected patients enrolled in the SHCS before 1.1.2013 with GRTs performed when they were treatment-naïve (n=7920). From them we identified patients having GRTs performed during recent infection (≤1 year of infection) according to documented infection dates, seroconversions, or ambiguity score and CD4 count. These patients thus constitute our basic study population (n=2421). For further analyses such as for the uni- and multivariable analysis in Table 1 and for the association analyses in Figure 4A-4D, 66 and 252 patients were excluded due to additional criteria set for these analyses. 66 patients did not have a clearly defined subtype, and 252 patients were not sampled between 1998-2012 (for details see individual descriptions in Table 1 and Figure 4). (B) Selection
profile for the treatment-failing population. We chose PVL as an indicator for the viral burden from treatment-failing patients on a population level. PVL was defined as the sum of log_{10} transformed VLs from treatment-failing patients. We thus selected available VL measurements from SHCS patients when they were treatment-experienced. High VLs (≥ 400 copies/ml) measured after 180 days of and during a continuous therapy were included from these patients. Because VL has been fully integrated into clinical routine since 1997, values before 1997 were excluded. We calculated a yearly-unique VL from each patient (if ≥ 1 VL was available per patient within the same year, the mean was used) and used these values for association analysis in Figure 4E. For further association analyses as in Figure 4F-4H, where we studied the transmission pattern of a specific TDR, only VLs corresponding with a GRT were included because genotyping was needed to determine drug-resistance mutations. From VLs having corresponding GRTs we selected those from patients carrying M184V, L90M, or K103N for association analysis in Figure 4F, 4G, or 4H, respectively.

Figure 3: Observed and predicted TDR prevalences

2421 recently-infected, treatment-naïve patients with their first GRTs were included. For each year we calculated the percentage of GRTs detecting TDR (black dots) to (A) any drug, (B) NRTI, (C) PI, and (D) NNRTI. Additionally, we predicted TDR prevalence (blue dashed lines) by holding all co-variables except for year and number of available drug classes at baseline from the multivariable logistic regression model (Table 1) and transforming the odds obtained from the model. Co-variables included in the model were HIV-1 subtype and transmission group due to univariable significance and sex, number of available drug classes, and calendar year that were chosen a priori. Missing data were list-wise deleted. Total numbers of GRTs included for each year were listed at the bottom of Figure 3 (for observed data in black; for predicted data in blue). The reason for a smaller sample size (n=2355) for the predicted prevalences was that 66 patients were excluded from the multivariable model due to non-classified HIV-1 subtypes.
We found that the large fluctuations of the observed TDR prevalences (black dots) could be explained by two opposing developments: (1) a continuous increase with time when no new drug classes were introduced, and (2) a sharp decrease when a new drug class was introduced (orange vertical lines). This combined effect was described by the predicted TDR prevalence (blue dashed lines).

vertical bars = 95% CI

Figure 4: Association analysis for TDR prevalences with PVL from ART-failing patients from the previous year

Poisson regression was used to test the association between TDR and PVL from ART-failing patients from the previous year. 2169 patients with recently-infected, treatment-naïve GRTs during years 1998-2012 were included as the outcome to account for annual prevalences of (A) any TDR, (B) transmitted M184V, (C) transmitted L90M, and (D) transmitted K103N. Included as an explanatory variable was (E) PVL of all ART-failing patients, PVL of ART-failing patients carrying (F) M184V, (G) L90M, and (H) K103N, respectively, during years 1997-2011. Total numbers of GRTs performed from recently-infected, treatment-naïve patients for each year were listed in the first row of the table at the bottom of Figure 4. Annual numbers of yearly-unique VLs for all failing patients, noted as PVL (all failing patients), and PVL (failing patients with a specific mutation) were listed in the second to forth row.

We found that PVL of all treatment-failing patients has decreased over time (E; linear regression: -318 per year [-438,-197]; p<0.001). Annual prevalences for any TDR was negatively associated with PVL of treatment-failing patients from the previous year (A,E; RR=0.91 for every 1000 PVL-all increment [0.83,0.99]; p=0.033). Prevalence of transmitted M184V was positively associated with PVL from ART-failing patients carrying M184V from the previous year (B,F; RR=1.50 for every 100 PVL increment [1.20,1.86]; p<0.001). On the other hand, a negative association and no association was found for L90M (C,G; RR=0.75 for...
per 100 PVL increment [0.58, 0.96]; p=0.022) and K103N (D,H; RR=1.00 for per 100 PVL increment [0.73, 1.37]; p=0.99), respectively.
Figure 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>treatment-experienced n=9616</td>
<td>262</td>
<td>616</td>
<td>663</td>
<td>517</td>
<td>622</td>
<td>620</td>
<td>721</td>
<td>690</td>
<td>798</td>
<td>771</td>
<td>524</td>
<td>622</td>
<td>620</td>
<td>721</td>
<td>690</td>
<td>798</td>
<td>771</td>
<td>524</td>
</tr>
<tr>
<td>treatment-naïve n=10504</td>
<td>535</td>
<td>837</td>
<td>744</td>
<td>459</td>
<td>524</td>
<td>449</td>
<td>479</td>
<td>491</td>
<td>610</td>
<td>598</td>
<td>651</td>
<td>692</td>
<td>705</td>
<td>736</td>
<td>721</td>
<td>605</td>
<td>456</td>
<td>212</td>
</tr>
</tbody>
</table>
Figure 3

(A) to any drug

(B) to NRTI

(C) to PI

(D) to NNRTI

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>observed, n=2421</td>
<td>35</td>
<td>96</td>
<td>121</td>
<td>104</td>
<td>120</td>
<td>129</td>
<td>110</td>
<td>136</td>
<td>131</td>
<td>160</td>
<td>194</td>
<td>193</td>
<td>176</td>
<td>186</td>
<td>185</td>
<td>146</td>
<td>122</td>
<td>77</td>
</tr>
<tr>
<td>predicted, n=2355</td>
<td>32</td>
<td>93</td>
<td>118</td>
<td>102</td>
<td>113</td>
<td>122</td>
<td>106</td>
<td>130</td>
<td>127</td>
<td>156</td>
<td>189</td>
<td>187</td>
<td>176</td>
<td>181</td>
<td>183</td>
<td>142</td>
<td>122</td>
<td>76</td>
</tr>
</tbody>
</table>
Table 1: Prevalence of resistance to TDF in failing patients at the University of Zurich on July 24, 2015

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TDR, n=2169</td>
<td>--</td>
<td>104</td>
<td>120</td>
<td>129</td>
<td>110</td>
<td>136</td>
<td>131</td>
<td>160</td>
<td>194</td>
<td>193</td>
<td>176</td>
<td>186</td>
<td>185</td>
<td>146</td>
<td>122</td>
<td>77</td>
</tr>
<tr>
<td>PVL(all failing patients), n=18097</td>
<td>1421</td>
<td>1528</td>
<td>1580</td>
<td>1437</td>
<td>1619</td>
<td>1631</td>
<td>1592</td>
<td>1411</td>
<td>1250</td>
<td>1149</td>
<td>986</td>
<td>813</td>
<td>668</td>
<td>570</td>
<td>442</td>
<td>--</td>
</tr>
<tr>
<td>PVL (failing patients with M184V), n=2159</td>
<td>292</td>
<td>253</td>
<td>236</td>
<td>179</td>
<td>233</td>
<td>185</td>
<td>195</td>
<td>176</td>
<td>100</td>
<td>94</td>
<td>74</td>
<td>52</td>
<td>38</td>
<td>30</td>
<td>22</td>
<td>--</td>
</tr>
<tr>
<td>PVL (failing patients with L90M), n=925</td>
<td>50</td>
<td>107</td>
<td>111</td>
<td>99</td>
<td>110</td>
<td>90</td>
<td>101</td>
<td>84</td>
<td>54</td>
<td>38</td>
<td>40</td>
<td>19</td>
<td>12</td>
<td>5</td>
<td>5</td>
<td>--</td>
</tr>
<tr>
<td>PVL (failing patients with K103N), n=680</td>
<td>6</td>
<td>15</td>
<td>33</td>
<td>51</td>
<td>82</td>
<td>77</td>
<td>103</td>
<td>76</td>
<td>49</td>
<td>47</td>
<td>48</td>
<td>28</td>
<td>32</td>
<td>18</td>
<td>15</td>
<td>--</td>
</tr>
</tbody>
</table>