Header

UZH-Logo

Maintenance Infos

Plasticity of the muscle proteome to exercise at altitude - Zurich Open Repository and Archive


Flueck, Martin (2009). Plasticity of the muscle proteome to exercise at altitude. High Altitude Medicine & Biology, 10(2):183-193.

Abstract

The ascent of humans to the summits of the highest peaks on Earth initiated a spurt of explorations into the physiological consequences of physical activity at altitude. The past three decades have demonstrated that the resetting of respiratory and cardiovascular control with chronic exposure to altitudes above 4000 m is accompanied by important structural-functional adjustments of skeletal muscle. The fully altitude-adapted phenotype preserves energy charge at reduced aerobic capacity through the promotion of anaerobic substrate flux and tighter metabolic control, often at the expense of muscle mass. In seeming contrast, intense physical activity at moderate hypoxia (2500 to 4000 m) modifies this response in both low and high altitude natives through metabolic compensation by elevating local aerobic capacity and possibly preventing muscle fiber atrophy. The combined use of classical morphometry and contemporary proteomic technology provides a highly resolved picture of the temporal control of hypoxia-induced muscular adaptations. The muscle proteome signature identifies mitochondrial autophagy and protein degradation as prime adaptive mechanisms to passive altitude exposure and ascent to extreme altitude. Protein measures also explain the lactate paradox by a sparing of glycolytic enzymes from general muscle wasting. Enhanced mitochondrial and angiogenic protein expression in human muscle with exercise up to 4000 m is related to the reduction in intramuscular oxygen content below 1% (8 torr), when the master regulator of hypoxia-dependent gene expression, HIF-1alpha, is stabilized. Accordingly, it is proposed here that the catabolic consequences of chronic hypoxia exposure reflect the insufficient activation of hypoxia-sensitive signaling and the suppression of energy-consuming protein translation.

Abstract

The ascent of humans to the summits of the highest peaks on Earth initiated a spurt of explorations into the physiological consequences of physical activity at altitude. The past three decades have demonstrated that the resetting of respiratory and cardiovascular control with chronic exposure to altitudes above 4000 m is accompanied by important structural-functional adjustments of skeletal muscle. The fully altitude-adapted phenotype preserves energy charge at reduced aerobic capacity through the promotion of anaerobic substrate flux and tighter metabolic control, often at the expense of muscle mass. In seeming contrast, intense physical activity at moderate hypoxia (2500 to 4000 m) modifies this response in both low and high altitude natives through metabolic compensation by elevating local aerobic capacity and possibly preventing muscle fiber atrophy. The combined use of classical morphometry and contemporary proteomic technology provides a highly resolved picture of the temporal control of hypoxia-induced muscular adaptations. The muscle proteome signature identifies mitochondrial autophagy and protein degradation as prime adaptive mechanisms to passive altitude exposure and ascent to extreme altitude. Protein measures also explain the lactate paradox by a sparing of glycolytic enzymes from general muscle wasting. Enhanced mitochondrial and angiogenic protein expression in human muscle with exercise up to 4000 m is related to the reduction in intramuscular oxygen content below 1% (8 torr), when the master regulator of hypoxia-dependent gene expression, HIF-1alpha, is stabilized. Accordingly, it is proposed here that the catabolic consequences of chronic hypoxia exposure reflect the insufficient activation of hypoxia-sensitive signaling and the suppression of energy-consuming protein translation.

Citations

27 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 06 Aug 2015
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:06 Aug 2015 08:11
Last Modified:05 Apr 2016 19:20
Publisher:Mary Ann Liebert
ISSN:1527-0297
Publisher DOI:https://doi.org/10.1089/ham.2008.1104
PubMed ID:19519225

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 42MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations