Header

UZH-Logo

Maintenance Infos

The effects of foundation species on community assembly: a global study on alpine cushion plant communities


Abstract

Foundation species can change plant community structure by modulating important ecological processes such as community assembly, yet this topic is poorly understood. In alpine systems, cushion plants commonly act as foundation species by ameliorating local conditions. Here, we analyze diversity patterns of species’ assembly within cushions and in adjacent surrounding open substrates (83 sites across five continents) calculating floristic dissimilarity between replicate plots, and using linear models to analyze relationships between microhabitats and species diversity. Floristic dissimilarity did not change across biogeographic regions, but was consistently lower in the cushions than in the open microhabitat. Cushion plants appear to enable recruitment of many relatively stress-intolerant species that otherwise would not establish in these communities, yet the niche space constructed by cushion plants supports a more homogeneous composition of species than the niche space beyond the cushion’s influence. As a result, cushion plants support higher a- diversity and a larger species pool, but harbor assemblies with lower b-diversity than open microhabitats. We conclude that habitats with and without dominant foundation species can strongly differ in the processes that drive species recruitment, and thus the relationship between local and regional species diversity.

Abstract

Foundation species can change plant community structure by modulating important ecological processes such as community assembly, yet this topic is poorly understood. In alpine systems, cushion plants commonly act as foundation species by ameliorating local conditions. Here, we analyze diversity patterns of species’ assembly within cushions and in adjacent surrounding open substrates (83 sites across five continents) calculating floristic dissimilarity between replicate plots, and using linear models to analyze relationships between microhabitats and species diversity. Floristic dissimilarity did not change across biogeographic regions, but was consistently lower in the cushions than in the open microhabitat. Cushion plants appear to enable recruitment of many relatively stress-intolerant species that otherwise would not establish in these communities, yet the niche space constructed by cushion plants supports a more homogeneous composition of species than the niche space beyond the cushion’s influence. As a result, cushion plants support higher a- diversity and a larger species pool, but harbor assemblies with lower b-diversity than open microhabitats. We conclude that habitats with and without dominant foundation species can strongly differ in the processes that drive species recruitment, and thus the relationship between local and regional species diversity.

Statistics

Citations

8 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

31 downloads since deposited on 13 Aug 2015
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:b-diversity, biodiversity, biogeographic gradients, community assembly rules, cushion plants, foundation species, niche construction, species recruitment
Language:English
Date:2015
Deposited On:13 Aug 2015 06:59
Last Modified:28 Apr 2017 00:52
Publisher:Ecological Society of America
ISSN:0012-9658
Publisher DOI:https://doi.org/10.1890/14-2443.1

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 207kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations