Header

UZH-Logo

Maintenance Infos

Chromosome Missegregation Associated with RUVBL1 Deficiency


Gentili, Christian; Castor, Dennis; Kaden, Svenja; Lauterbach, David; Gysi, Mario; Steigemann, Patrick; Gerlich, Daniel W; Jiricny, Josef; Ferrari, Stefano (2015). Chromosome Missegregation Associated with RUVBL1 Deficiency. PLoS ONE, 10(7):e0133576.

Abstract

RUVBL1 (RuvB-like1) and RUVBL2 (RuvB-like 2) are integral components of multisubunit protein complexes involved in processes ranging from cellular metabolism, transcription and chromatin remodeling to DNA repair. Here, we show that although RUVBL1 and RUVBL2 are known to form heterodimeric complexes in which they stabilize each other, the subunits separate during cytokinesis. In anaphase-to-telophase transition, RUVBL1 localizes to structures of the mitotic spindle apparatus, where it partially co-localizes with polo-like kinase 1 (PLK1). The ability of PLK1 to phosphorylate RUVBL1-but not RUVBL2-in vitro and their physical association in vivo suggest that this kinase differentially regulates the function of the RuvB-like proteins during mitosis. We further show that siRNA-mediated knock-down of RuvB-like proteins causes severe defects in chromosome alignment and segregation. In addition, we show that the ATPase activity of RUVBL1 is indispensable for cell proliferation. Our data thus demonstrate that RUVBL1 is essential for efficient mitosis and proliferation.

Abstract

RUVBL1 (RuvB-like1) and RUVBL2 (RuvB-like 2) are integral components of multisubunit protein complexes involved in processes ranging from cellular metabolism, transcription and chromatin remodeling to DNA repair. Here, we show that although RUVBL1 and RUVBL2 are known to form heterodimeric complexes in which they stabilize each other, the subunits separate during cytokinesis. In anaphase-to-telophase transition, RUVBL1 localizes to structures of the mitotic spindle apparatus, where it partially co-localizes with polo-like kinase 1 (PLK1). The ability of PLK1 to phosphorylate RUVBL1-but not RUVBL2-in vitro and their physical association in vivo suggest that this kinase differentially regulates the function of the RuvB-like proteins during mitosis. We further show that siRNA-mediated knock-down of RuvB-like proteins causes severe defects in chromosome alignment and segregation. In addition, we show that the ATPase activity of RUVBL1 is indispensable for cell proliferation. Our data thus demonstrate that RUVBL1 is essential for efficient mitosis and proliferation.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

34 downloads since deposited on 27 Aug 2015
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2015
Deposited On:27 Aug 2015 12:51
Last Modified:12 Aug 2017 22:35
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0133576
PubMed ID:26201077

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations