Header

UZH-Logo

Maintenance Infos

Temporally Dissociable Contributions of Human Medial Prefrontal Subregions to Reward-Guided Learning


Hauser, Tobias U; Hunt, Laurence T; Iannaccone, Reto; Walitza, Susanne; Brandeis, Daniel; Brem, Silvia; Dolan, Raymond J (2015). Temporally Dissociable Contributions of Human Medial Prefrontal Subregions to Reward-Guided Learning. Journal of Neuroscience, 35(32):11209-11220.

Abstract

UNLABELLED: In decision making, dorsal and ventral medial prefrontal cortex show a sensitivity to key decision variables, such as reward prediction errors. It is unclear whether these signals reflect parallel processing of a common synchronous input to both regions, for example from mesocortical dopamine, or separate and consecutive stages in reward processing. These two perspectives make distinct predictions about the relative timing of feedback-related activity in each of these regions, a question we address here. To reconstruct the unique temporal contribution of dorsomedial (dmPFC) and ventromedial prefrontal cortex (vmPFC) to simultaneously measured EEG activity in human subjects, we developed a novel trialwise fMRI-informed EEG analysis that allows dissociating correlated and overlapping sources. We show that vmPFC uniquely contributes a sustained activation profile shortly after outcome presentation, whereas dmPFC contributes a later and more peaked activation pattern. This temporal dissociation is expressed mainly in the alpha band for a vmPFC signal, which contrasts with a theta based dmPFC signal. Thus, our data show reward-related vmPFC and dmPFC responses have distinct time courses and unique spectral profiles, findings that support distinct functional roles in a reward-processing network.
SIGNIFICANCE STATEMENT: Multiple subregions of the medial prefrontal cortex are known to be involved in decision making and learning, and expose similar response patterns in fMRI. Here, we used a novel approach to analyzing simultaneous EEG-fMRI that allows to dissociate the individual time courses of brain regions. We find that vmPFC and dmPFC have distinguishable time courses and time-frequency patterns.

Abstract

UNLABELLED: In decision making, dorsal and ventral medial prefrontal cortex show a sensitivity to key decision variables, such as reward prediction errors. It is unclear whether these signals reflect parallel processing of a common synchronous input to both regions, for example from mesocortical dopamine, or separate and consecutive stages in reward processing. These two perspectives make distinct predictions about the relative timing of feedback-related activity in each of these regions, a question we address here. To reconstruct the unique temporal contribution of dorsomedial (dmPFC) and ventromedial prefrontal cortex (vmPFC) to simultaneously measured EEG activity in human subjects, we developed a novel trialwise fMRI-informed EEG analysis that allows dissociating correlated and overlapping sources. We show that vmPFC uniquely contributes a sustained activation profile shortly after outcome presentation, whereas dmPFC contributes a later and more peaked activation pattern. This temporal dissociation is expressed mainly in the alpha band for a vmPFC signal, which contrasts with a theta based dmPFC signal. Thus, our data show reward-related vmPFC and dmPFC responses have distinct time courses and unique spectral profiles, findings that support distinct functional roles in a reward-processing network.
SIGNIFICANCE STATEMENT: Multiple subregions of the medial prefrontal cortex are known to be involved in decision making and learning, and expose similar response patterns in fMRI. Here, we used a novel approach to analyzing simultaneous EEG-fMRI that allows to dissociate the individual time courses of brain regions. We find that vmPFC and dmPFC have distinguishable time courses and time-frequency patterns.

Statistics

Citations

10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 23 Sep 2015
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Center for Child and Adolescent Psychiatry
04 Faculty of Medicine > Neuroscience Center Zurich
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:12 August 2015
Deposited On:23 Sep 2015 14:33
Last Modified:10 Aug 2017 09:21
Publisher:Society for Neuroscience
ISSN:0270-6474
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.0560-15.2015
PubMed ID:26269631

Download

Download PDF  'Temporally Dissociable Contributions of Human Medial Prefrontal Subregions to Reward-Guided Learning'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)