Header

UZH-Logo

Maintenance Infos

Correcting heat-induced chemical shift distortions in proton resonance frequency-shift thermometry


Gaur, Pooja; Partanen, Ari; Werner, Beat; Ghanouni, Pejman; Bitton, Rachelle; Butts Pauly, Kim; Grissom, William A (2016). Correcting heat-induced chemical shift distortions in proton resonance frequency-shift thermometry. Magnetic Resonance in Medicine, 76(1):172-182.

Abstract

PURPOSE: To reconstruct proton resonance frequency-shift temperature maps free of chemical shift distortions.
THEORY AND METHODS: Tissue heating created by thermal therapies such as focused ultrasound surgery results in a change in proton resonance frequency that causes geometric distortions in the image and calculated temperature maps, in the same manner as other chemical shift and off-resonance distortions if left uncorrected. We propose an online-compatible algorithm to correct these distortions in 2DFT and echo-planar imaging acquisitions, which is based on a k-space signal model that accounts for proton resonance frequency change-induced phase shifts both up to and during the readout. The method was evaluated with simulations, gel phantoms, and in vivo temperature maps from brain, soft tissue tumor, and uterine fibroid focused ultrasound surgery treatments.
RESULTS: Without chemical shift correction, peak temperature and thermal dose measurements were spatially offset by approximately 1 mm in vivo. Spatial shifts increased as readout bandwidth decreased, as shown by up to 4-fold greater temperature hot spot asymmetry in uncorrected temperature maps. In most cases, the computation times to correct maps at peak heat were less than 10 ms, without parallelization.
CONCLUSION: Heat-induced proton resonance frequency changes create chemical shift distortions in temperature maps resulting from MR-guided focused ultrasound surgery ablations, but the distortions can be corrected using an online-compatible algorithm.

Abstract

PURPOSE: To reconstruct proton resonance frequency-shift temperature maps free of chemical shift distortions.
THEORY AND METHODS: Tissue heating created by thermal therapies such as focused ultrasound surgery results in a change in proton resonance frequency that causes geometric distortions in the image and calculated temperature maps, in the same manner as other chemical shift and off-resonance distortions if left uncorrected. We propose an online-compatible algorithm to correct these distortions in 2DFT and echo-planar imaging acquisitions, which is based on a k-space signal model that accounts for proton resonance frequency change-induced phase shifts both up to and during the readout. The method was evaluated with simulations, gel phantoms, and in vivo temperature maps from brain, soft tissue tumor, and uterine fibroid focused ultrasound surgery treatments.
RESULTS: Without chemical shift correction, peak temperature and thermal dose measurements were spatially offset by approximately 1 mm in vivo. Spatial shifts increased as readout bandwidth decreased, as shown by up to 4-fold greater temperature hot spot asymmetry in uncorrected temperature maps. In most cases, the computation times to correct maps at peak heat were less than 10 ms, without parallelization.
CONCLUSION: Heat-induced proton resonance frequency changes create chemical shift distortions in temperature maps resulting from MR-guided focused ultrasound surgery ablations, but the distortions can be corrected using an online-compatible algorithm.

Statistics

Citations

2 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:15 Oct 2015 13:59
Last Modified:16 Jun 2016 01:00
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0740-3194
Publisher DOI:https://doi.org/10.1002/mrm.25899
PubMed ID:26301458

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations