Header

UZH-Logo

Maintenance Infos

Phase behavior of a designed cyclopropyl analogue of monoolein: implications for low-temperature membrane protein crystallization


Salvati Manni, Livia; Zabara, Alexandru; Osornio, Yazmin M; Schöppe, Jendrik; Batyuk, Alexander; Plückthun, Andreas; Siegel, Jay S; Mezzenga, Raffaele; Landau, Ehud M (2015). Phase behavior of a designed cyclopropyl analogue of monoolein: implications for low-temperature membrane protein crystallization. Angewandte Chemie Internationale Edition, 54(3):1027-1031.

Abstract

Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low-temperature LCPs for biophysical studies of membrane proteins is called for. Monodihydrosterculin (MDS) is a designer lipid based on monoolein (MO) with a configurationally restricted cyclopropyl ring replacing the olefin. Small-angle X-ray scattering (SAXS) analyses revealed a phase diagram for MDS lacking the high-temperature, highly curved reverse hexagonal phase typical for MO, and extending the cubic phase boundary to lower temperature, thereby establishing the relationship between lipid molecular structure and mesophase behavior. The use of MDS as a new material for LCP-based membrane protein crystallization at low temperature was demonstrated by crystallizing bacteriorhodopsin at 20 °C as well as 4 °C.

Abstract

Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low-temperature LCPs for biophysical studies of membrane proteins is called for. Monodihydrosterculin (MDS) is a designer lipid based on monoolein (MO) with a configurationally restricted cyclopropyl ring replacing the olefin. Small-angle X-ray scattering (SAXS) analyses revealed a phase diagram for MDS lacking the high-temperature, highly curved reverse hexagonal phase typical for MO, and extending the cubic phase boundary to lower temperature, thereby establishing the relationship between lipid molecular structure and mesophase behavior. The use of MDS as a new material for LCP-based membrane protein crystallization at low temperature was demonstrated by crystallizing bacteriorhodopsin at 20 °C as well as 4 °C.

Statistics

Citations

9 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Sep 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:12 January 2015
Deposited On:24 Sep 2015 12:55
Last Modified:27 Jan 2017 08:25
Publisher:Wiley-VCH Verlag
ISSN:1433-7851
Publisher DOI:https://doi.org/10.1002/anie.201409791
PubMed ID:25418121

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations