Header

UZH-Logo

Maintenance Infos

IL-4 abrogates T(H)17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells


Guenova, Emmanuella; Skabytska, Yuliya; Hoetzenecker, Wolfram; Weindl, Günther; Sauer, Karin; Tham, Manuela; Kim, Kyu-Won; Park, Ji-Hyeon; Seo, Ji Hae; Ignatova, Desislava; Cozzio, Antonio; Levesque, Mitchell P; Volz, Thomas; Köberle, Martin; Kaesler, Susanne; Thomas, Peter; Mailhammer, Reinhard; Ghoreschi, Kamran; Schäkel, Knut; Amarov, Boyko; Eichner, Martin; Schaller, Martin; Clark, Rachael A; Röcken, Martin; Biedermann, Tilo (2015). IL-4 abrogates T(H)17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America, 112(7):2163-2168.

Abstract

Interleukin 4 (IL-4) can suppress delayed-type hypersensitivity reactions (DTHRs), including organ-specific autoimmune diseases in mice and humans. Despite the broadly documented antiinflammatory effect of IL-4, the underlying mode of action remains incompletely understood, as IL-4 also promotes IL-12 production by dendritic cells (DCs) and IFN-γ-producing T(H)1 cells in vivo. Studying the impact of IL-4 on the polarization of human and mouse DCs, we found that IL-4 exerts opposing effects on the production of either IL-12 or IL-23. While promoting IL-12-producing capacity of DCs, IL-4 completely abrogates IL-23. Bone marrow chimeras proved that IL-4-mediated suppression of DTHRs relies on the signal transducer and activator of transcription 6 (STAT6)-dependent abrogation of IL-23 in antigen-presenting cells. Moreover, IL-4 therapy attenuated DTHRs by STAT6- and activating transcription factor 3 (ATF3)-dependent suppression of the IL-23/T(H)17 responses despite simultaneous enhancement of IL-12/TH1 responses. As IL-4 therapy also improves psoriasis in humans and suppresses IL-23/T(H)17 responses without blocking IL-12/T(H)1, selective IL-4-mediated IL-23/T(H)17 silencing is promising as treatment against harmful inflammation, while sparing the IL-12-dependent T(H)1 responses.

Abstract

Interleukin 4 (IL-4) can suppress delayed-type hypersensitivity reactions (DTHRs), including organ-specific autoimmune diseases in mice and humans. Despite the broadly documented antiinflammatory effect of IL-4, the underlying mode of action remains incompletely understood, as IL-4 also promotes IL-12 production by dendritic cells (DCs) and IFN-γ-producing T(H)1 cells in vivo. Studying the impact of IL-4 on the polarization of human and mouse DCs, we found that IL-4 exerts opposing effects on the production of either IL-12 or IL-23. While promoting IL-12-producing capacity of DCs, IL-4 completely abrogates IL-23. Bone marrow chimeras proved that IL-4-mediated suppression of DTHRs relies on the signal transducer and activator of transcription 6 (STAT6)-dependent abrogation of IL-23 in antigen-presenting cells. Moreover, IL-4 therapy attenuated DTHRs by STAT6- and activating transcription factor 3 (ATF3)-dependent suppression of the IL-23/T(H)17 responses despite simultaneous enhancement of IL-12/TH1 responses. As IL-4 therapy also improves psoriasis in humans and suppresses IL-23/T(H)17 responses without blocking IL-12/T(H)1, selective IL-4-mediated IL-23/T(H)17 silencing is promising as treatment against harmful inflammation, while sparing the IL-12-dependent T(H)1 responses.

Statistics

Citations

Dimensions.ai Metrics
42 citations in Web of Science®
43 citations in Scopus®
45 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Dermatology Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:17 February 2015
Deposited On:08 Oct 2015 13:38
Last Modified:14 Feb 2018 09:29
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Closed
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1416922112
PubMed ID:25646481

Download

Full text not available from this repository.
View at publisher