Header

UZH-Logo

Maintenance Infos

Intravoxel incoherent motion protocol evaluation and data quality in normal and malignant liver tissue and comparison to the literature


Ter Voert, Edwin E G W; Delso, Gaspar; Porto, Miguel; Huellner, Martin; Veit-Haibach, Patrick (2016). Intravoxel incoherent motion protocol evaluation and data quality in normal and malignant liver tissue and comparison to the literature. Investigative Radiology, 51(2):90-99.

Abstract

OBJECTIVES: Although intravoxel incoherent motion (IVIM) becomes more and more popular, there is currently no clear consensus on the number and distribution of b-values to use. In this work, we (1) tested and evaluated the data quality of a 25-b-value IVIM protocol in patients with malignant liver lesions and normal liver tissue as a standard of reference, (2) calculated an optimal b-value distribution and compared with the standard of reference, and (3) compared the 25-b-value protocol with other proposed protocols in the literature.
MATERIALS AND METHODS: Intravoxel incoherent motion imaging with 25 b-values was performed at 3 T in a total of 15 patients with malignant liver lesions. Reference IVIM parameter maps were calculated in tumor and normal liver tissue. With these parameters, optimal IVIM protocols with reduced numbers of b-values were calculated. These optimal IVIM protocols were again applied to calculate new IVIM parameter maps that were compared with the reference parameter maps by calculating mean relative errors. In addition, 35 other IVIM protocols, as found in literature, were compared in a similar way with the 25-b-value protocol serving as a standard of reference.
RESULTS: The mean relative error depends on the number of b-values and their distribution. In tumor tissue, the error is higher and more variable than in normal-appearing liver tissue. The largest errors occur in tumor tissue and in the protocols having low numbers of b-values in the IVIM protocols. In the calculated optimal IVIM protocols, the mean relative errors decreased by 40% or more when the number of b-values included increased from 4 to 16. The mean relative errors in the protocols adapted from the literature vary substantially between the various b-value distributions. One optimized 16-b-value protocol, which was found in literature, reduced the average relative error by 80% when compared with 4- and 5-b-value protocols listed in literature.
CONCLUSIONS: Including more b-values and applying an optimized b-value distribution significantly reduces errors in the IVIM parameter estimates, thereby increasing its accuracy.This effect is even more pronounced in inhomogeneous tumor compared with that in normal liver tissue. However, when restrictions in acquisition time or patient-related factors apply, a minimum of 16 b-values should be considered for reliable results.

Abstract

OBJECTIVES: Although intravoxel incoherent motion (IVIM) becomes more and more popular, there is currently no clear consensus on the number and distribution of b-values to use. In this work, we (1) tested and evaluated the data quality of a 25-b-value IVIM protocol in patients with malignant liver lesions and normal liver tissue as a standard of reference, (2) calculated an optimal b-value distribution and compared with the standard of reference, and (3) compared the 25-b-value protocol with other proposed protocols in the literature.
MATERIALS AND METHODS: Intravoxel incoherent motion imaging with 25 b-values was performed at 3 T in a total of 15 patients with malignant liver lesions. Reference IVIM parameter maps were calculated in tumor and normal liver tissue. With these parameters, optimal IVIM protocols with reduced numbers of b-values were calculated. These optimal IVIM protocols were again applied to calculate new IVIM parameter maps that were compared with the reference parameter maps by calculating mean relative errors. In addition, 35 other IVIM protocols, as found in literature, were compared in a similar way with the 25-b-value protocol serving as a standard of reference.
RESULTS: The mean relative error depends on the number of b-values and their distribution. In tumor tissue, the error is higher and more variable than in normal-appearing liver tissue. The largest errors occur in tumor tissue and in the protocols having low numbers of b-values in the IVIM protocols. In the calculated optimal IVIM protocols, the mean relative errors decreased by 40% or more when the number of b-values included increased from 4 to 16. The mean relative errors in the protocols adapted from the literature vary substantially between the various b-value distributions. One optimized 16-b-value protocol, which was found in literature, reduced the average relative error by 80% when compared with 4- and 5-b-value protocols listed in literature.
CONCLUSIONS: Including more b-values and applying an optimized b-value distribution significantly reduces errors in the IVIM parameter estimates, thereby increasing its accuracy.This effect is even more pronounced in inhomogeneous tumor compared with that in normal liver tissue. However, when restrictions in acquisition time or patient-related factors apply, a minimum of 16 b-values should be considered for reliable results.

Statistics

Citations

3 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

41 downloads since deposited on 09 Oct 2015
41 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:09 Oct 2015 16:21
Last Modified:25 Sep 2016 00:00
Publisher:Lippincott Williams & Wilkins
ISSN:0020-9996
Publisher DOI:https://doi.org/10.1097/RLI.0000000000000207
PubMed ID:26405835

Download

Download PDF  'Intravoxel incoherent motion protocol evaluation and data quality in normal and malignant liver tissue and comparison to the literature'.
Preview
Content: Published Version
Filetype: PDF
Size: 10MB
View at publisher