Header

UZH-Logo

Maintenance Infos

Resolving variation in the reproductive tradeoff between sperm size and number


Immler, Simone; Pitnick, Scott; Parker, Geoff A; Durrant, Kate L; Lüpold, Stefan; Calhim, Sara; Birkhead, Tim R (2011). Resolving variation in the reproductive tradeoff between sperm size and number. Proceedings of the National Academy of Sciences of the United States of America, 108(13):5325-5330.

Abstract

Spermatozoa are amongst the most variable cells, and three factors are thought to account for this variation in design: fertilization mode, phylogeny, and postcopulatory sexual selection. In addition, it has long been assumed that a tradeoff exists between sperm size and number, and although postcopulatory sexual selection affects both traits, empirical evidence for a tradeoff has so far been elusive. Our recent theoretical model predicts that the nature of a direct tradeoff between sperm size and number varies with sperm competition mechanism and sperm competition risk. We test these predictions using a comparative approach in two very different taxa with different sperm competition mechanisms: passerine birds (mechanism: simple raffle) and Drosophila fruit flies (sperm displacement). We show that in both groups, males increase their total ejaculate investment with increasing sperm competition risk, but whereas passerine birds allocate disproportionately to sperm number, drosophilids allocate disproportionately to sperm size. This striking difference between the two groups can be at least partly explained by sperm competition mechanisms depending on sperm size relative to the size of the female reproductive tract: in large animals (passerines), sperm numbers are advantageous in sperm competition owing to dilution inside the female tract, whereas in small animals (drosophilids), large sperm are advantageous for physical competition (sperm displacement). Our study provides two important results. First, we provide convincing evidence for the existence of a sperm size-number tradeoff. Second, we show that by considering both sperm competition mechanism and dilution, can we account for variation in sperm size between different taxa.

Abstract

Spermatozoa are amongst the most variable cells, and three factors are thought to account for this variation in design: fertilization mode, phylogeny, and postcopulatory sexual selection. In addition, it has long been assumed that a tradeoff exists between sperm size and number, and although postcopulatory sexual selection affects both traits, empirical evidence for a tradeoff has so far been elusive. Our recent theoretical model predicts that the nature of a direct tradeoff between sperm size and number varies with sperm competition mechanism and sperm competition risk. We test these predictions using a comparative approach in two very different taxa with different sperm competition mechanisms: passerine birds (mechanism: simple raffle) and Drosophila fruit flies (sperm displacement). We show that in both groups, males increase their total ejaculate investment with increasing sperm competition risk, but whereas passerine birds allocate disproportionately to sperm number, drosophilids allocate disproportionately to sperm size. This striking difference between the two groups can be at least partly explained by sperm competition mechanisms depending on sperm size relative to the size of the female reproductive tract: in large animals (passerines), sperm numbers are advantageous in sperm competition owing to dilution inside the female tract, whereas in small animals (drosophilids), large sperm are advantageous for physical competition (sperm displacement). Our study provides two important results. First, we provide convincing evidence for the existence of a sperm size-number tradeoff. Second, we show that by considering both sperm competition mechanism and dilution, can we account for variation in sperm size between different taxa.

Statistics

Citations

71 citations in Web of Science®
67 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 28 Oct 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:29 March 2011
Deposited On:28 Oct 2015 13:36
Last Modified:05 Apr 2016 19:27
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1009059108
PubMed ID:21402912

Download